Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A novel approach for food intake detection using electroglottography

Farooq, Muhammad; Fontana, Juan ManuelIcon ; Sazonov, Edward
Fecha de publicación: 05/2014
Editorial: IOP Publishing
Revista: Physiological Measurement
ISSN: 0967-3334
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

Many methods for monitoring diet and food intake rely on subjects self-reporting their daily intake. These methods are subjective, potentially inaccurate and need to be replaced by more accurate and objective methods. This paper presents a novel approach that uses an electroglottograph (EGG) device for an objective and automatic detection of food intake. Thirty subjects participated in a four-visit experiment involving the consumption of meals with self-selected content. Variations in the electrical impedance across the larynx caused by the passage of food during swallowing were captured by the EGG device. To compare performance of the proposed method with a well-established acoustical method, a throat microphone was used for monitoring swallowing sounds. Both signals were segmented into non-overlapping epochs of 30 s and processed to extract wavelet features. Subject-independent classifiers were trained, using artificial neural networks, to identify periods of food intake from the wavelet features. Results from leave-one-out cross validation showed an average per-epoch classification accuracy of 90.1% for the EGG-based method and 83.1% for the acoustic-based method, demonstrating the feasibility of using an EGG for food intake detection.
Palabras clave: EATING DISORDERS , INGESTIVE BEHAVIORS , DIETARY INTAKE MONITORING , ELECTROGLOTTOGRAPHY SENSOR , SUPPORT VECTOR MACHINES , SWALLOWING SOUND
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.287Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/102472
URL: https://iopscience.iop.org/article/10.1088/0967-3334/35/5/739
DOI: https://doi.org/10.1088/0967-3334/35/5/739
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Farooq, Muhammad; Fontana, Juan Manuel; Sazonov, Edward; A novel approach for food intake detection using electroglottography; IOP Publishing; Physiological Measurement; 35; 5; 5-2014; 739-751
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES