Mostrar el registro sencillo del ítem

dc.contributor.author
Schmidt, Jorge Friedrich  
dc.contributor.author
Cousseau, Juan Edmundo  
dc.contributor.author
Wichman, Risto Ilari  
dc.contributor.author
Werner, Stefan  
dc.date.available
2020-04-07T22:29:01Z  
dc.date.issued
2011-07-14  
dc.identifier.citation
Schmidt, Jorge Friedrich; Cousseau, Juan Edmundo; Wichman, Risto Ilari; Werner, Stefan; Low-Complexity Channel Prediction Using Approximated Recursive DCT; Institute of Electrical and Electronics Engineers; IEEE Transactions On Circuits And Systems I-regular Papers; 58; 10; 14-7-2011; 2520-2530  
dc.identifier.issn
1549-8328  
dc.identifier.uri
http://hdl.handle.net/11336/102250  
dc.description.abstract
We present a novel channel estimator/predictor for OFDM systems over time-varying channels using a recursive formulation of a basis expansion model (BEM) based on an approximated discrete cosine transform (DCT). We derive a recursive implementation of the approximated DCT-BEM for tracking time-varying channels based on a filter bank. The recursive approximated DCT-BEM structure is then used for long range channel prediction by proper scaling and time extrapolation of the filter bank. As the implicit BEM is time invariant we further simplify the implementation by employing a steady-state Kalman filter whose overall complexity is comparable to an LMS algorithm. The derived predictor outperforms, in terms of predictor range, previously proposed long range predictors that are based on autoregressive (AR) modeling of the time-varying channel. For a similar performance, in terms of MSE, the computational complexity of the proposed predictor is significantly lower than conventional sum-of-sinusoids (SOS) channel predictors as no channel delays nor Doppler frequencies need to be estimated.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Channel prediction  
dc.subject
Discrete cosine transform  
dc.subject
Basis function approximation  
dc.subject
Doppler spectrum  
dc.subject.classification
Telecomunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Low-Complexity Channel Prediction Using Approximated Recursive DCT  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-07T13:34:57Z  
dc.journal.volume
58  
dc.journal.number
10  
dc.journal.pagination
2520-2530  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Picataway, NJ  
dc.description.fil
Fil: Schmidt, Jorge Friedrich. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina  
dc.description.fil
Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina  
dc.description.fil
Fil: Wichman, Risto Ilari. Aalto University; Finlandia  
dc.description.fil
Fil: Werner, Stefan. Aalto University; Finlandia  
dc.journal.title
IEEE Transactions On Circuits And Systems I-regular Papers  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/5951808  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TCSI.2011.2158139