Mostrar el registro sencillo del ítem
dc.contributor.author
Schmidt, Jorge Friedrich
dc.contributor.author
Cousseau, Juan Edmundo
dc.contributor.author
Wichman, Risto Ilari
dc.contributor.author
Werner, Stefan
dc.date.available
2020-04-07T22:29:01Z
dc.date.issued
2011-07-14
dc.identifier.citation
Schmidt, Jorge Friedrich; Cousseau, Juan Edmundo; Wichman, Risto Ilari; Werner, Stefan; Low-Complexity Channel Prediction Using Approximated Recursive DCT; Institute of Electrical and Electronics Engineers; IEEE Transactions On Circuits And Systems I-regular Papers; 58; 10; 14-7-2011; 2520-2530
dc.identifier.issn
1549-8328
dc.identifier.uri
http://hdl.handle.net/11336/102250
dc.description.abstract
We present a novel channel estimator/predictor for OFDM systems over time-varying channels using a recursive formulation of a basis expansion model (BEM) based on an approximated discrete cosine transform (DCT). We derive a recursive implementation of the approximated DCT-BEM for tracking time-varying channels based on a filter bank. The recursive approximated DCT-BEM structure is then used for long range channel prediction by proper scaling and time extrapolation of the filter bank. As the implicit BEM is time invariant we further simplify the implementation by employing a steady-state Kalman filter whose overall complexity is comparable to an LMS algorithm. The derived predictor outperforms, in terms of predictor range, previously proposed long range predictors that are based on autoregressive (AR) modeling of the time-varying channel. For a similar performance, in terms of MSE, the computational complexity of the proposed predictor is significantly lower than conventional sum-of-sinusoids (SOS) channel predictors as no channel delays nor Doppler frequencies need to be estimated.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Channel prediction
dc.subject
Discrete cosine transform
dc.subject
Basis function approximation
dc.subject
Doppler spectrum
dc.subject.classification
Telecomunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Low-Complexity Channel Prediction Using Approximated Recursive DCT
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-04-07T13:34:57Z
dc.journal.volume
58
dc.journal.number
10
dc.journal.pagination
2520-2530
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Picataway, NJ
dc.description.fil
Fil: Schmidt, Jorge Friedrich. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
dc.description.fil
Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
dc.description.fil
Fil: Wichman, Risto Ilari. Aalto University; Finlandia
dc.description.fil
Fil: Werner, Stefan. Aalto University; Finlandia
dc.journal.title
IEEE Transactions On Circuits And Systems I-regular Papers
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/5951808
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TCSI.2011.2158139
Archivos asociados