Artículo
Bit Loading Using Imperfect CSIT for Prediction-Based Resource Allocation in Mobile OFDMA
Fecha de publicación:
10/2011
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
Ieee Transactions On Vehicular Technology
ISSN:
0018-9545
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present a prediction-based resource allocation algorithm (RA) for orthogonal frequency-division multiple-access (OFDMA) downlink, where inaccuracies in the wireless channel predictions are accounted for in the problem formulation. As the prediction quality significantly degrades with the prediction horizon, we propose a solution based on the histogram of the prediction error. This characterization also enables different mobile stations (MSs) to use different channel predictors as it does not rely on a specific prediction scheme. Using this characterization of the prediction error and based on classical resource allocation strategies, we derive an algorithm that incorporates imperfect channel prediction information of future time slots. We evaluate the proposed algorithm using a practical low-complexity channel predictor suitable for implementation at the MSs. Simulation results show that the proposed algorithm outperforms previous prediction-based RA strategies without the characterization of the prediction error, and the system throughput is comparable with the case with perfect channel state information in the transmitter (CSIT).
Palabras clave:
Scheduling
,
Time-varying
,
Cannel
,
Wireless
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIIE)
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Schmidt, Jorge Friedrich; Cousseau, Juan Edmundo; Wichman, Risto Ilari; Werner, Stefan; Bit Loading Using Imperfect CSIT for Prediction-Based Resource Allocation in Mobile OFDMA; Institute of Electrical and Electronics Engineers; Ieee Transactions On Vehicular Technology; 60; 8; 10-2011; 4082-4088
Compartir
Altmétricas