Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Determinants of biodiversity in subtropical shallow lakes (Atlantic coast, Uruguay)

Kruk, Carla; Rodríguez-gallego, Lorena; Meerhoff, Mariana; Quintans, Federico; Lacerot, Gissell; Mazzeo, Néstor; Scasso, Flavio; Paggi, Juan CesarIcon ; Peeters, Edwin T. H. M.; Marten, Scheffer
Fecha de publicación: 12/2009
Editorial: Wiley Blackwell Publishing, Inc
Revista: Freshwater Biology (print)
ISSN: 0046-5070
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Biología Marina, Limnología

Resumen

SUMMARY 1. Shallow lakes and ponds contribute disproportionally to species richness relative to other aquatic ecosystems. In-lake conditions (e.g. presence of submerged plants) seem to play a key role in determining diversity, as has been demonstrated for temperate lakes. When water quality deteriorates and turbidity increases, conditions in such lakes are affected drastically resulting in a loss of diversity. However, it is not clear whether subtropical lakes show the same pattern and whether the richness of all groups reacts similarly to environmental changes. 2. Our aim was to analyse the main factors explaining patterns of species richness in plankton, fish and submerged macrophyte assemblages in both turbid and clear subtropical shallow lakes. We analysed abiotic and biotic features of 18 subtropical, small- to mediumsized, shallow lakes along the Uruguayan coast. We compared both turbid and clear ecosystem states and evaluated the relative variance explained by the factors measured. 3. Variables describing lake and catchment morphology, as well as the percentage of the water column occupied by submerged macrophytes (%PVI) and water turbidity, had strong effects on taxon richness. Interestingly, individual biotic groups had dissimilar richness patterns. Macrophyte %PVI decreased with increasing lake area, while fish species richness showed the opposite pattern. Phytoplankton species richness increased with macrophyte %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. species richness showed the opposite pattern. Phytoplankton species richness increased with macrophyte %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. species richness showed the opposite pattern. Phytoplankton species richness increased with macrophyte %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. strong effects on taxon richness. Interestingly, individual biotic groups had dissimilar richness patterns. Macrophyte %PVI decreased with increasing lake area, while fish species richness showed the opposite pattern. Phytoplankton species richness increased with macrophyte %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. species richness showed the opposite pattern. Phytoplankton species richness increased with macrophyte %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. species richness showed the opposite pattern. Phytoplankton species richness increased with macrophyte %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. strong effects on taxon richness. Interestingly, individual biotic groups had dissimilar richness patterns. Macrophyte %PVI decreased with increasing lake area, while fish species richness showed the opposite pattern. Phytoplankton species richness increased with macrophyte %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. species richness showed the opposite pattern. Phytoplankton species richness increased with macrophyte %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. species richness showed the opposite pattern. Phytoplankton species richness increased with macrophyte %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. %PVI) and water turbidity, had strong effects on taxon richness. Interestingly, individual biotic groups had dissimilar richness patterns. Macrophyte %PVI decreased with increasing lake area, while fish species richness showed the opposite pattern. Phytoplankton species richness increased with macrophyte %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. species richness showed the opposite pattern. Phytoplankton species richness increased with macrophyte %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. species richness showed the opposite pattern. Phytoplankton species richness increased with macrophyte %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. %PVI decreased with increasing lake area, while fish species richness showed the opposite pattern. Phytoplankton species richness increased with macrophyte %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes. %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes.
Palabras clave: FISH , LAKE AREA , PLANKTON , SPECIES RICHNESS , SUBMERGED MACROPHYTES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 662.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/102235
DOI: http://dx.doi.org/10.1111/j.1365-2427.2009.02274.x
Colecciones
Articulos(INALI)
Articulos de INST.NAC.DE LIMNOLOGIA (I)
Citación
Kruk, Carla; Rodríguez-gallego, Lorena; Meerhoff, Mariana; Quintans, Federico; Lacerot, Gissell; et al.; Determinants of biodiversity in subtropical shallow lakes (Atlantic coast, Uruguay); Wiley Blackwell Publishing, Inc; Freshwater Biology (print); 54; 12; 12-2009; 2628-2641
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES