Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Learning Running-time Prediction Models for Gene-Expression Analysis Workflows

Monge Bosdari, David AntonioIcon ; Holec, Matej; Zelezny, Filip; Garcia Garino, Carlos GabrielIcon
Fecha de publicación: 09/2015
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Latin America Transactions
ISSN: 1548-0992
Idioma: Español
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

One of the central issues for the efficient management of Scientific workflow applications is the prediction of tasks performance. This paper proposes a novel approach for constructing performance models for tasks in data-intensivescientific workflows in an autonomous way. Ensemble Machine Learning techniques are used to produce robust combined models with high predictive accuracy. Information derived from workflow systems and the characteristics and provenance of the data are exploited to guarantee the accuracy of the models. Agene-expression analysis workflow application was used as case study over homogeneous and heterogeneous computing environments. Experimental results evidence noticeable improvements while using ensemble models in comparison withsingle/standalone prediction models. Ensemble learning techniques made it possible to reduce the prediction error with respect to the strategies of a single-model with values ranging from 14.47% to 28.36% for the homogeneous case, and from 8.34% to 17.18% for the heterogeneous case.
Palabras clave: Performance Prediction , Ensemble Learning , Workflows , Bioinformatics , Distributed Computing
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 796.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/101968
URL: http://www.ewh.ieee.org/reg/9/etrans/ieee/issues/vol13/vol13issue09Sept.2015/13T
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Monge Bosdari, David Antonio; Holec, Matej; Zelezny, Filip; Garcia Garino, Carlos Gabriel; Learning Running-time Prediction Models for Gene-Expression Analysis Workflows; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 13; 9; 9-2015; 3088-3095
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES