Artículo
Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums
Zozor, Steeve; Bosyk, Gustavo Martin
; Portesi, Mariela Adelina
; Osán, Tristán Martín
; Lamberti, Pedro Walter
Fecha de publicación:
17/02/2015
Editorial:
American Physical Society
Revista:
AIP Conference Proceedings
ISSN:
0094-243X
e-ISSN:
1551-7616
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we propose generalized inequalities to quantify the uncertainty principle. We deal with two observables with finite discrete spectra described by positive operator-valued measures (POVM) and with systems in mixed states. Denoting by p(A;ρ) and p(B;ρ) the probability vectors associated with observables A and B when the system is in the state ρ, we focus on relations of the form U_α(p(A;ρ))+U_β (p(B;ρ)) ≥ B_{α,β} (A,B) where U_λ is a measure of uncertainty and B is a non-trivial state-independent bound for the uncertainty sum. We propose here: (i) an extension of the usual Landau?Pollak inequality for uncertainty measures of the form U_f (p(A;ρ)) = f(max_i p_i(A;ρ)) issued from well suited metrics; our generalization comes out as a consequence of the triangle inequality. The original Landau?Pollak inequality initially proved for nondegenerate observables and pure states, appears to be the most restrictive one in terms of the maximal probabilities; (ii) an entropic formulation for which the uncertainty measure is based on generalized entropies of Rényi or Havrda?Charvát?Tsallis type: U_{g,α}(p(A;ρ)) = g(Σ_i[p_i(A;ρ)]^α)/(1−α). Our approach is based on Schur-concavity considerations and on previously derived Landau?Pollak type inequalities.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina; Osán, Tristán Martín; Lamberti, Pedro Walter; Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums; American Physical Society; AIP Conference Proceedings; 1641; 1; 17-2-2015; 181-188
Compartir
Altmétricas