Mostrar el registro sencillo del ítem

dc.contributor.author
Giordano, Pablo César  
dc.contributor.author
Beccaria, Alejandro José  
dc.contributor.author
Goicoechea, Hector Casimiro  
dc.contributor.author
Olivieri, Alejandro Cesar  
dc.date.available
2020-04-03T17:47:43Z  
dc.date.issued
2013-10  
dc.identifier.citation
Giordano, Pablo César; Beccaria, Alejandro José; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization; Elsevier Science Sa; Biochemical Engineering Journal; 80; 10-2013; 1-9  
dc.identifier.issn
1369-703X  
dc.identifier.uri
http://hdl.handle.net/11336/101885  
dc.description.abstract
The concentrations of glucose and total reducing sugars obtained by chemical hydrolysis of three different lignocellulosic feedstocks were maximized. Two response surface methodologies were applied to model the amount of sugars produced: (1) classical quadratic least-squares fit (QLS), and (2) artificial neural networks based on radial basis functions (RBF). The results obtained by applying RBF were more reliable and better statistical parameters were obtained. Depending on the type of biomass, different results wereobtained. Improvements in fit between 35% and 55% were obtained when comparing the coefficients of determination (R2) computed for both QLS and RBF methods. Coupling the obtained RBF models with particle swarm optimization to calculate the global desirability function, allowed to perform multiple response optimization. The predicted optimal conditions were confirmed by carrying out independent experiments.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Sa  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Glucose  
dc.subject
Modelling  
dc.subject
Optimization  
dc.subject
Artificial intelligence  
dc.subject
Particle swarm optimization  
dc.subject
Radial basis functions  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-02T15:09:40Z  
dc.journal.volume
80  
dc.journal.pagination
1-9  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Giordano, Pablo César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina  
dc.description.fil
Fil: Beccaria, Alejandro José. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina  
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina  
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.journal.title
Biochemical Engineering Journal  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bej.2013.09.004