Mostrar el registro sencillo del ítem

dc.contributor.author
Gigena, Nicolás Alejandro  
dc.contributor.author
Rossignoli, Raúl Dante  
dc.date.available
2020-04-02T20:35:37Z  
dc.date.issued
2014-01  
dc.identifier.citation
Gigena, Nicolás Alejandro; Rossignoli, Raúl Dante; Generalized conditional entropy in bipartite quantum systems; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 5302; 1-2014; 1530201-1530218  
dc.identifier.issn
1751-8113  
dc.identifier.uri
http://hdl.handle.net/11336/101750  
dc.description.abstract
We analyze, for a general concave entropic form, the associated conditional entropy of a quantum system A+B, obtained as a result of a local measurement on one of the systems (B). This quantity is a measure of the average mixedness of A after such measurement, and its minimum over all local measurements is shown to be the associated entanglement of formation between A and a purifying third systemC. In the case of the vonNeumann entropy, thisminimum determines also the quantum discord. For classically correlated states and mixtures of a pure state with the maximally mixed state, we show that the minimizing measurement can be determined analytically and is universal, i.e., the same for all concave forms. While these properties no longer hold for general states, we also show that in the special case of the linear entropy, an explicit expression for the associated conditional entropy can be obtained, whose minimum among projective measurements in a general qudit?qubit state can be determined analytically, in terms of the largest eigenvalue of a simple 3×3 correlation matrix. Such minimum determines the maximum conditional purity of A, and the associated minimizing measurement is shown to be also universal in the vicinity of maximal mixedness. Results for X states, including typical reduced states of spin pairs in XY chains at weak and strong transverse fields, are also provided and indicate that the measurements minimizing the von Neumann and linear conditional entropies are typically coincident in these states, being determined essentially by the main correlation. They can differ, however, substantially from that minimizing the geometric discord.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Entropy  
dc.subject
Conditional  
dc.subject
Entanglement  
dc.subject
Discord  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Generalized conditional entropy in bipartite quantum systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-16T14:07:11Z  
dc.journal.volume
47  
dc.journal.number
5302  
dc.journal.pagination
1530201-1530218  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Gigena, Nicolás Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.description.fil
Fil: Rossignoli, Raúl Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.journal.title
Journal of Physics A: Mathematical and Theoretical  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/47/1/015302/article  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1751-8113/47/1/015302