Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR Theories

Mercader, Andrew GustavoIcon ; Duchowicz, Pablo RománIcon ; Fernández, Francisco MarceloIcon ; Castro, Eduardo AlbertoIcon
Fecha de publicación: 04/2011
Editorial: American Chemical Society
Revista: Journal of Chemical Information and Modeling
ISSN: 1549-9596
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Físico-Química, Ciencia de los Polímeros, Electroquímica

Resumen

The selection of an optimal set of molecular descriptors from a much greater pool of such regression variables is a crucial step in the development of QSAR and QSPR models. The aim of this work is to further improve this important selection process. For this reason three different alternatives for the initial steps of our recently developed enhanced replacement method (ERM) and replacement method (RM) are proposed. These approaches had previously proven to yield near optimal results with a much smaller number of linear regressions than the full search. The algorithms were tested on four different experimental data sets, formed by collections of 116, 200, 78, and 100 experimental records from different compounds and 1268, 1338, 1187, and 1306 molecular descriptors, respectively. The comparisons showed that one of the new alternatives further improves the ERM, which has shown to be superior to genetic algorithms for the selection of an optimal set of molecular descriptors from a much greater pool. The new proposed alternative also improves the simpler and the lower computational demand algorithm RM.
Palabras clave: QSAR , QSPR , ERM , RM
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.312Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/101631
URL: http://pubs.acs.org/doi/abs/10.1021/ci200079b
DOI: http://dx.doi.org/10.1021/ci200079b
Colecciones
Articulos(IBIMOL)
Articulos de INSTITUTO DE BIOQUIMICA Y MEDICINA MOLECULAR
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
Mercader, Andrew Gustavo; Duchowicz, Pablo Román; Fernández, Francisco Marcelo; Castro, Eduardo Alberto; Advances in the Replacement and Enhanced Replacement Method in QSAR and QSPR Theories; American Chemical Society; Journal of Chemical Information and Modeling; 51; 7; 4-2011; 1575-1581
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES