Mostrar el registro sencillo del ítem

dc.contributor.author
Ceretani, Andrea Noemí  
dc.contributor.author
Bollati, Julieta  
dc.contributor.author
Fusi, L.  
dc.contributor.author
Rosso, F.  
dc.date.available
2020-04-01T16:28:25Z  
dc.date.issued
2018-06  
dc.identifier.citation
Ceretani, Andrea Noemí; Bollati, Julieta; Fusi, L.; Rosso, F.; Mathematical model for acid water neutralization with anomalous and fast diffusion; Elsevier; Nonlinear Analysis-real World Applications; 41; 6-2018; 509-528  
dc.identifier.issn
1468-1218  
dc.identifier.uri
http://hdl.handle.net/11336/101525  
dc.description.abstract
In this paper we model the neutralization of an acid solution in which the hydrogen ions are transported according to Cattaneo’s diffusion. The latter is a modification of classical Fickian diffusion in which the flux adjusts to the gradient with a positive relaxation time. Accordingly the evolution of the ions concentration is governed by the hyperbolic telegraph equation instead of the classical heat equation. We focus on the specific case of a marble slab reacting with a sulphuric acid solution and we consider a one-dimensional geometry. We show that the problem is multi-scale in time, with a reaction time scale that is larger than the diffusive time scale, so that the governing equation is reduced to the one-dimensional wave equation. The mathematical problem turns out to be a hyperbolic free boundary problem where the consumption of the slab is described by a nonlinear differential equation. Global well posedness is proved and some numerical simulations are provided.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
NEUTRALIZATION  
dc.subject
REACTION KINETICS  
dc.subject
MULTI-SCALE MODELING  
dc.subject
FREE BOUNDARY PROBLEM  
dc.subject
ANOMALOUS DIFFUSION  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Mathematical model for acid water neutralization with anomalous and fast diffusion  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-10T13:06:07Z  
dc.journal.volume
41  
dc.journal.pagination
509-528  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Ceretani, Andrea Noemí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Universidad Austral. Facultad de Ciencias Empresariales; Argentina  
dc.description.fil
Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Fusi, L.. Università degli Studi di Firenze; Italia  
dc.description.fil
Fil: Rosso, F.. Università degli Studi di Firenze; Italia  
dc.journal.title
Nonlinear Analysis-real World Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.nonrwa.2017.11.006  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1468121817301797  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1707.09962