Mostrar el registro sencillo del ítem

dc.contributor.author
Raspanti, Claudia Gabriela  
dc.contributor.author
Bandoni, Jose Alberto  
dc.contributor.author
Biegler, L.  
dc.date.available
2020-03-30T20:09:30Z  
dc.date.issued
2000-10  
dc.identifier.citation
Raspanti, Claudia Gabriela; Bandoni, Jose Alberto; Biegler, L.; New strategies for flexibility analysis and design under uncertainty; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 24; 9-10; 10-2000; 2193-2209  
dc.identifier.issn
0098-1354  
dc.identifier.uri
http://hdl.handle.net/11336/101422  
dc.description.abstract
Process flexibility and design under uncertainty have been researched extensively in the literature. Problem formulations for flexibility include nested optimization problems and these can often be refined by substituting the optimality conditions for these nested problems. However, these reformulations are highly constrained and can be expensive to solve. In this paper we extend algorithms to solve these reformulated NLP problem under uncertainty by introducing two contributions to this approach. These are the use of a Constraint Aggregation function (KS function) and Smoothing Functions. We begin with basic properties of KS function. Next, we review a class of parametric smooth functions, used to replace the complementarity conditions of the KKT conditions with a well-behaved, smoothed nonlinear equality constraint. In this paper we apply the previous strategies to two specific problems: i) the'worst case algorithm', that assesses design under uncertainty and, ii) the flexibility index and feasibility test formulations. In the first case, two new algorithms are derived, one of them being single level optimization problem. Next using similar ideas, both flexibility index and feasibility test are reformulated leading to a single non linear programming problem instead of a mixed integer non linear programming one. The new formulations are demonstrated on five different example problems where a CPU time reduction of more than 70 and 80% is demonstrated.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Uncertainty  
dc.subject
Design  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
New strategies for flexibility analysis and design under uncertainty  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-25T14:36:19Z  
dc.journal.volume
24  
dc.journal.number
9-10  
dc.journal.pagination
2193-2209  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Raspanti, Claudia Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Biegler, L.. Carnegie Mellon University; Estados Unidos  
dc.journal.title
Computers and Chemical Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0098135400005913  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/S0098-1354(00)00591-3