Mostrar el registro sencillo del ítem
dc.contributor.author
Piovan, Luis Amadeo
dc.date.available
2016-12-26T16:42:06Z
dc.date.issued
2013-04
dc.identifier.citation
Piovan, Luis Amadeo; A Tonnetz model for pentachords; Taylor & Francis Ltd; Journal Of Mathematics And Music; 7; 1; 4-2013; 29-53
dc.identifier.issn
1745-9737
dc.identifier.uri
http://hdl.handle.net/11336/10112
dc.description.abstract
This article deals with the construction of surfaces that are suitable for representing pentachords or 5-pitch segments that are in the same T/I class. It is a generalization of the well known Öttingen-Riemann torus for triads of neo-Riemannian theories. Two pentachords are near if they differ by a particular set of contextual inversions and the whole contextual group of inversions produces a Tiling (Tessellation) by pentagons on the surfaces. A description of the surfaces as coverings of a particular Tiling is given in the twelve-tone enharmonic scale case.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Tonnetz
dc.subject
Neo-Riemann Network
dc.subject
Pentachord
dc.subject
Contextual Group
dc.subject
Tessellation
dc.subject
Poincaré Disk
dc.subject
David Lewin
dc.subject
Charles Koechlin
dc.subject
Igor Stravinsky
dc.subject.classification
Otras Matemáticas
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Tonnetz model for pentachords
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-12-21T13:45:45Z
dc.journal.volume
7
dc.journal.number
1
dc.journal.pagination
29-53
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Piovan, Luis Amadeo. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina
dc.journal.title
Journal Of Mathematics And Music
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/17459737.2013.769637
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1301.4255
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/17459737.2013.769637
Archivos asociados