Mostrar el registro sencillo del ítem

dc.contributor.author
Harboure, Eleonor Ofelia  
dc.contributor.author
Rosa, L. de  
dc.contributor.author
Segovia Fernandez, Carlos  
dc.contributor.author
Torrea Hernández, José Luis  
dc.date.available
2020-03-26T20:49:42Z  
dc.date.issued
2004-04  
dc.identifier.citation
Harboure, Eleonor Ofelia; Rosa, L. de; Segovia Fernandez, Carlos; Torrea Hernández, José Luis; Lp-dimension free boundedness for Riesz transforms associated to Hermite functions; Springer; Mathematische Annalen; 328; 4; 4-2004; 653-682  
dc.identifier.issn
0025-5831  
dc.identifier.uri
http://hdl.handle.net/11336/101031  
dc.description.abstract
Riesz transforms associated to Hermite functions were introduced by S. Thangavelu, who proved that they are bounded operators on L^p(R^d ), 1 < p < ∞ . In this paper we give a different proof that allows us to show that the Lp-norms of these operators are bounded by a constant not depending on the dimension d. Moreover, we define Riesz transforms of higher order and free dimensional estimates of the L^p-bounds of these operators are obtained. In order to prove the mentioned results we give an extension of the Littlewood-Paley theory that we believe of independent interest.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Hermite functions  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Lp-dimension free boundedness for Riesz transforms associated to Hermite functions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-20T20:03:23Z  
dc.journal.volume
328  
dc.journal.number
4  
dc.journal.pagination
653-682  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Rosa, L. de. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Segovia Fernandez, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Torrea Hernández, José Luis. Universidad Autónoma de Madrid; España  
dc.journal.title
Mathematische Annalen  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00208-003-0501-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-003-0501-2