Mostrar el registro sencillo del ítem
dc.contributor.author
Harboure, Eleonor Ofelia
dc.contributor.author
Rosa, L. de
dc.contributor.author
Segovia Fernandez, Carlos
dc.contributor.author
Torrea Hernández, José Luis
dc.date.available
2020-03-26T20:49:42Z
dc.date.issued
2004-04
dc.identifier.citation
Harboure, Eleonor Ofelia; Rosa, L. de; Segovia Fernandez, Carlos; Torrea Hernández, José Luis; Lp-dimension free boundedness for Riesz transforms associated to Hermite functions; Springer; Mathematische Annalen; 328; 4; 4-2004; 653-682
dc.identifier.issn
0025-5831
dc.identifier.uri
http://hdl.handle.net/11336/101031
dc.description.abstract
Riesz transforms associated to Hermite functions were introduced by S. Thangavelu, who proved that they are bounded operators on L^p(R^d ), 1 < p < ∞ . In this paper we give a different proof that allows us to show that the Lp-norms of these operators are bounded by a constant not depending on the dimension d. Moreover, we define Riesz transforms of higher order and free dimensional estimates of the L^p-bounds of these operators are obtained. In order to prove the mentioned results we give an extension of the Littlewood-Paley theory that we believe of independent interest.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Hermite functions
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Lp-dimension free boundedness for Riesz transforms associated to Hermite functions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-03-20T20:03:23Z
dc.journal.volume
328
dc.journal.number
4
dc.journal.pagination
653-682
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina
dc.description.fil
Fil: Rosa, L. de. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Segovia Fernandez, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Torrea Hernández, José Luis. Universidad Autónoma de Madrid; España
dc.journal.title
Mathematische Annalen
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00208-003-0501-2
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-003-0501-2
Archivos asociados