Artículo
An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition
Fecha de publicación:
09/2002
Editorial:
Society for Industrial and Applied Mathematics
Revista:
Siam Journal On Numerical Analysis
ISSN:
0036-1429
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We introduce and study an adaptive finite element method (FEM) for the Stokes system based on an Uzawa outer iteration to update the pressure and an elliptic adaptive inner iteration for velocity. We show linear convergence in terms of the outer iteration counter for the pairs of spaces consisting of continuous finite elements of degree k for velocity, whereas for pressure the elements can be either discontinuous of degree k - 1 or continuous of degree k -1 and k. The popular Taylor-Hood family is the sole example of stable elements included in the theory, which in turn relies on the stability of the continuous problem and thus makes no use of the discrete inf-sup condition. We discuss the realization and complexity of the elliptic adaptive inner solver and provide consistent computational evidence that the resulting meshes are quasi-optimal.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Bänsch, Eberhard; Morin, Pedro; Nochetto, Ricardo Horacio; An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 40; 4; 9-2002; 1207-1229
Compartir
Altmétricas