Mostrar el registro sencillo del ítem

dc.contributor.author
Morin, Pedro  
dc.contributor.author
Nochetto, Ricardo Horacio  
dc.contributor.author
Siebert, Kunibert G.  
dc.date.available
2020-03-23T12:49:07Z  
dc.date.issued
2002-12  
dc.identifier.citation
Morin, Pedro; Nochetto, Ricardo Horacio; Siebert, Kunibert G.; Convergence of Adaptive Finite Element Methods; Society for Industrial and Applied Mathematics; Siam Review; 44; 4; 12-2002; 631-658  
dc.identifier.issn
0036-1445  
dc.identifier.uri
http://hdl.handle.net/11336/100623  
dc.description.abstract
Adaptive finite element methods (FEMs) have been widely used in applications for over 20 years now. In practice, they converge starting from coarse grids, although no mathematical theory has been able to prove this assertion. Ensuring an error reduction rate based on a posteriori error estimators, together with a reduction rate of data oscillation (information missed by the underlying averaging process), we construct a simple and efficient adaptive FEM for elliptic partial differential equations. We prove that this algorithm converges with linear rate without any preliminary mesh adaptation nor explicit knowledge of constants. Any prescribed error tolerance is thus achieved in a finite number of steps. A number of numerical experiments in two and three dimensions yield quasi-optimal meshes along with a competitive performance. Extensions to higher order elements and applications to saddle point problems are discussed as well.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Society for Industrial and Applied Mathematics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
A POSTERIORI ERROR ESTIMATORS  
dc.subject
ADAPTIVE MESH REFINEMENT  
dc.subject
CONVERGENCE  
dc.subject
DATA OSCILLATION  
dc.subject
STOKES PROBLEM  
dc.subject
UZAWA ITERATIONS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Convergence of Adaptive Finite Element Methods  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-20T20:04:05Z  
dc.journal.volume
44  
dc.journal.number
4  
dc.journal.pagination
631-658  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Philadelphia  
dc.description.fil
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos  
dc.description.fil
Fil: Siebert, Kunibert G.. Universität Heidelberg;  
dc.journal.title
Siam Review  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1137/S0036144502409093