Mostrar el registro sencillo del ítem
dc.contributor.author
Morin, Pedro
dc.contributor.author
Nochetto, Ricardo Horacio
dc.contributor.author
Siebert, Kunibert G.
dc.date.available
2020-03-23T12:49:07Z
dc.date.issued
2002-12
dc.identifier.citation
Morin, Pedro; Nochetto, Ricardo Horacio; Siebert, Kunibert G.; Convergence of Adaptive Finite Element Methods; Society for Industrial and Applied Mathematics; Siam Review; 44; 4; 12-2002; 631-658
dc.identifier.issn
0036-1445
dc.identifier.uri
http://hdl.handle.net/11336/100623
dc.description.abstract
Adaptive finite element methods (FEMs) have been widely used in applications for over 20 years now. In practice, they converge starting from coarse grids, although no mathematical theory has been able to prove this assertion. Ensuring an error reduction rate based on a posteriori error estimators, together with a reduction rate of data oscillation (information missed by the underlying averaging process), we construct a simple and efficient adaptive FEM for elliptic partial differential equations. We prove that this algorithm converges with linear rate without any preliminary mesh adaptation nor explicit knowledge of constants. Any prescribed error tolerance is thus achieved in a finite number of steps. A number of numerical experiments in two and three dimensions yield quasi-optimal meshes along with a competitive performance. Extensions to higher order elements and applications to saddle point problems are discussed as well.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Society for Industrial and Applied Mathematics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
A POSTERIORI ERROR ESTIMATORS
dc.subject
ADAPTIVE MESH REFINEMENT
dc.subject
CONVERGENCE
dc.subject
DATA OSCILLATION
dc.subject
STOKES PROBLEM
dc.subject
UZAWA ITERATIONS
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Convergence of Adaptive Finite Element Methods
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-03-20T20:04:05Z
dc.journal.volume
44
dc.journal.number
4
dc.journal.pagination
631-658
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Philadelphia
dc.description.fil
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos
dc.description.fil
Fil: Siebert, Kunibert G.. Universität Heidelberg;
dc.journal.title
Siam Review
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1137/S0036144502409093
Archivos asociados