Artículo
Local maximal functions and operators associated to Laguerre expansions
Fecha de publicación:
07/2014
Editorial:
Tohoku University
Revista:
Tohoku Mathematical Journal
ISSN:
0040-8735
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we get sharp conditions on a weight v which allow us to obtain some weighted inequalities for a local Hardy-Littlewood Maximal operator defined on an open set in the Euclidean n-space. This result is applied to assure a pointwise convergence of the Laguerre heat-diffusion semigroup u(x,t) = (T(t)f)(x) to f when t tends to zero for all functions f in L p(v(x)dx) for p greater than or equal to 1 and a weight v. In proving this we obtain weighted inequalities for the maximal operator associated to the Laguerre diffusion semigroup of the Laguerre differential operator of order greater than or equal to 0. Finally, as a by-product, we obtain weighted inequalities for the Riesz-Laguerre operators.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Viola, Pablo Sebastian; Viviani, Beatriz Eleonora; Local maximal functions and operators associated to Laguerre expansions; Tohoku University; Tohoku Mathematical Journal; 66; 2; 7-2014; 155-169
Compartir
Altmétricas