Artículo
Approximation of the modified error function
Fecha de publicación:
11/2018
Editorial:
Elsevier Science Inc
Revista:
Applied Mathematics and Computation
ISSN:
0096-3003
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article, we obtain explicit approximations of the modified error function introduced in Cho and Sunderland (1974), as part of a Stefan problem with a temperature-dependent thermal conductivity. This function depends on a parameter δ which is related to the thermal conductivity in the original phase-change process. We propose a method to obtain approximations, which is based on the assumption that the modified error function admits a power series representation in δ. Accurate approximations are obtained through functions involving error and exponential functions only. For the special case in which δ assumes small positive values, we show that the modified error function presents some characteristic features of the classical error function, such as monotony, concavity, and boundedness. Moreover, we prove that the modified error function converges to the classical one when δ goes to zero.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Ceretani, Andrea Noemí; Salva, Natalia Nieves; Tarzia, Domingo Alberto; Approximation of the modified error function; Elsevier Science Inc; Applied Mathematics and Computation; 337; 11-2018; 607-617
Compartir
Altmétricas