Mostrar el registro sencillo del ítem

dc.contributor.author
Kaluza, Pablo Federico  
dc.date.available
2020-03-20T18:22:00Z  
dc.date.issued
2018-09  
dc.identifier.citation
Kaluza, Pablo Federico; Self-organizing dynamical networks able to learn autonomously; Europhysics Letters; Europhysics Letters; 123; 5; 9-2018; 1-10  
dc.identifier.issn
0295-5075  
dc.identifier.uri
http://hdl.handle.net/11336/100434  
dc.description.abstract
We present a model for the time evolution of network architectures based on dynamical systems. We show that the evolution of the existence of a connection in a network can be described as a stochastic non-Markovian telegraphic signal (NMTS). Such signal is formulated in two ways: as an algorithm and as the result of a system of differential equations. The autonomous learning conjecture (Kaluza P. and Mikhailov A. S., Phys. Rev. E, 90 (2014) 030901(R)) is implemented in the proposed dynamics. As a result, we construct self-organizing dynamical systems (networks) able to modify their structures in order to learn prescribed target functionalities. This theory is applied to two systems: the flow processing networks with time-programmed responses, and a system of first-order chemical reactions. In both cases, we show examples of the evolution and a statistical analysis of the obtained functional networks with respect to the model parameters.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Europhysics Letters  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DYNAMICAL SYSTEMS  
dc.subject
COMPLEX NETWORKS  
dc.subject
AUTONOMOUS LEARNING  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Self-organizing dynamical networks able to learn autonomously  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-20T13:14:57Z  
dc.journal.volume
123  
dc.journal.number
5  
dc.journal.pagination
1-10  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Kaluza, Pablo Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.journal.title
Europhysics Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://stacks.iop.org/0295-5075/123/i=5/a=58003?key=crossref.bd06b4e5bfac6f9813dc5ee951647324  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1209/0295-5075/123/58003