Mostrar el registro sencillo del ítem

dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Stegmayer, Georgina  
dc.contributor.author
Kamenetzky, Laura  
dc.contributor.author
López, Mariana  
dc.contributor.author
Lee, Je M.  
dc.contributor.author
Giovannoni, James J.  
dc.contributor.author
Carrari, Fernando Oscar  
dc.date.available
2020-03-20T17:57:08Z  
dc.date.issued
2010-08  
dc.identifier.citation
Milone, Diego Humberto; Stegmayer, Georgina; Kamenetzky, Laura; López, Mariana; Lee, Je M.; et al.; *omeSOM: A software for clustering and visualization of transcriptional and metabolite data mined from interspecific crosses of crop plants; BioMed Central; BMC Bioinformatics; 11; 8-2010; 438-448  
dc.identifier.issn
1471-2105  
dc.identifier.uri
http://hdl.handle.net/11336/100427  
dc.description.abstract
Background: Modern biology uses experimental systems that involve the exploration of phenotypic variation as a result of the recombination of several genomes. Such systems are useful to investigate the functional evolution of metabolic networks. One such approach is the analysis of transcript and metabolite profiles. These kinds of studies generate a large amount of data, which require dedicated computational tools for their analysis.Results: This paper presents a novel software named *omeSOM (transcript/metabol-ome Self Organizing Map) that implements a neural model for biological data clustering and visualization. It allows the discovery of relationships between changes in transcripts and metabolites of crop plants harboring introgressed exotic alleles and furthermore, its use can be extended to other type of omics data. The software is focused on the easy identification of groups including different molecular entities, independently of the number of clusters formed. The *omeSOM software provides easy-to-visualize interfaces for the identification of coordinated variations in the co-expressed genes and co-accumulated metabolites. Additionally, this information is linked to the most widely used gene annotation and metabolic pathway databases.Conclusions: *omeSOM is a software designed to give support to the data mining task of metabolic and transcriptional datasets derived from different databases. It provides a user-friendly interface and offers several visualization features, easy to understand by non-expert users. Therefore, *omeSOM provides support for data mining tasks and it is applicable to basic research as well as applied breeding programs. The software and a sample dataset are available free of charge at http://sourcesinc.sourceforge.net/omesom/.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
BioMed Central  
dc.relation
Dataset http://sourcesinc.sourceforge.net/omesom/  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
neural clustering  
dc.subject
self organizing map  
dc.subject
data integration  
dc.subject
visualization  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
*omeSOM: A software for clustering and visualization of transcriptional and metabolite data mined from interspecific crosses of crop plants  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-13T18:57:45Z  
dc.journal.volume
11  
dc.journal.pagination
438-448  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina  
dc.description.fil
Fil: Kamenetzky, Laura. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: López, Mariana. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina  
dc.description.fil
Fil: Lee, Je M.. Cornell University; Estados Unidos  
dc.description.fil
Fil: Giovannoni, James J.. Cornell University; Estados Unidos  
dc.description.fil
Fil: Carrari, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina  
dc.journal.title
BMC Bioinformatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1186/1471-2105-11-438  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-438