Mostrar el registro sencillo del ítem
dc.contributor.author
Méndez Babey, Máximo
dc.contributor.author
Rossit, Daniel Alejandro
dc.contributor.author
González, Begoña
dc.contributor.author
Frutos, Mariano
dc.date.available
2020-03-20T13:59:46Z
dc.date.issued
2019-12
dc.identifier.citation
Méndez Babey, Máximo; Rossit, Daniel Alejandro; González, Begoña; Frutos, Mariano; Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System; Institute of Electrical and Electronics Engineers; IEEE Access; 8; 12-2019; 3482-3497
dc.identifier.issn
2169-3536
dc.identifier.uri
http://hdl.handle.net/11336/100379
dc.description.abstract
This paper proposes a novel metaheuristic framework using a Differential Evolution (DE) algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened with the ability to search global mono-objective optimum of DE, that enhances the capability of finding those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and performance comparisons between different evolutionary algorithms were performed on a referent problem for the mono-objective and multi-objective literature, which consists of the design of a double reduction gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the whole POF which significantly improves the few previous multi-objective studies.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
DIFFERENTIAL EVOLUTION
dc.subject
EVOLUTIONARY COMPUTATION
dc.subject
GEAR TRAIN OPTIMIZATION
dc.subject
GENETIC ALGORITHMS
dc.subject
MECHANICAL ENGINEERING
dc.subject
MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS
dc.subject
NON-DOMINATED SORTING GENETIC ALGORITHM-II
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-02-26T20:06:46Z
dc.journal.volume
8
dc.journal.pagination
3482-3497
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva Jersey
dc.description.fil
Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria; España
dc.description.fil
Fil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: González, Begoña. Universidad de Las Palmas de Gran Canaria; España
dc.description.fil
Fil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
dc.journal.title
IEEE Access
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8945204
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ACCESS.2019.2962906
Archivos asociados