Mostrar el registro sencillo del ítem

dc.contributor.author
Méndez Babey, Máximo  
dc.contributor.author
Rossit, Daniel Alejandro  
dc.contributor.author
González, Begoña  
dc.contributor.author
Frutos, Mariano  
dc.date.available
2020-03-20T13:59:46Z  
dc.date.issued
2019-12  
dc.identifier.citation
Méndez Babey, Máximo; Rossit, Daniel Alejandro; González, Begoña; Frutos, Mariano; Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System; Institute of Electrical and Electronics Engineers; IEEE Access; 8; 12-2019; 3482-3497  
dc.identifier.issn
2169-3536  
dc.identifier.uri
http://hdl.handle.net/11336/100379  
dc.description.abstract
This paper proposes a novel metaheuristic framework using a Differential Evolution (DE) algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened with the ability to search global mono-objective optimum of DE, that enhances the capability of finding those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and performance comparisons between different evolutionary algorithms were performed on a referent problem for the mono-objective and multi-objective literature, which consists of the design of a double reduction gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the whole POF which significantly improves the few previous multi-objective studies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
DIFFERENTIAL EVOLUTION  
dc.subject
EVOLUTIONARY COMPUTATION  
dc.subject
GEAR TRAIN OPTIMIZATION  
dc.subject
GENETIC ALGORITHMS  
dc.subject
MECHANICAL ENGINEERING  
dc.subject
MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS  
dc.subject
NON-DOMINATED SORTING GENETIC ALGORITHM-II  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-26T20:06:46Z  
dc.journal.volume
8  
dc.journal.pagination
3482-3497  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva Jersey  
dc.description.fil
Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria; España  
dc.description.fil
Fil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: González, Begoña. Universidad de Las Palmas de Gran Canaria; España  
dc.description.fil
Fil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina  
dc.journal.title
IEEE Access  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8945204  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ACCESS.2019.2962906