Artículo
On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups
Fecha de publicación:
03/2020
Editorial:
American Mathematical Society
Revista:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
e-ISSN:
1088-6826
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Eldredge, Gordina and Saloff-Coste recently conjectured that, for a given compact connected Lie group $G$, there is a positive real number $C$ such that $\lambda_1(G,g)\operatorname{diam}(G,g)^2\leq C$ for all left-invariant metrics $g$ on $G$. In this short note, we establish the conjecture for the small subclass of naturally reductive left-invariant metrics on a compact simple Lie group.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Lauret, Emilio Agustin; On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups; American Mathematical Society; Proceedings of the American Mathematical Society; 3-2020; 1-5
Compartir
Altmétricas