Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Ensemble learning of runtime prediction models for gene-expression analysis workflows

Monge Bosdari, David AntonioIcon ; Holec, Matej; Zelezný, Filip; Garcia Garino, Carlos GabrielIcon
Fecha de publicación: 12/2015
Editorial: Springer
Revista: Cluster Computing-the Journal Of Networks Software Tools And Applications
ISSN: 1386-7857
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

The adequate management of scientific workflow applications strongly depends on the availability of accurate performance models of sub-tasks. Numerous approaches use machine learning to generate such models autonomously, thus alleviating the human effort associated to this process. However, these standalone models may lack robustness, leading to a decay on the quality of information provided to workflow systems on top. This paper presents a novel approach for learning ensemble prediction models of tasks runtime. The ensemble-learning method entitled bootstrap aggregating (bagging) is used to produce robust ensembles of M5P regression trees of better predictive performance than could be achieved by standalone models. Our approach has been tested on gene expression analysis workflows. The results show that the ensemble method leads to significant prediction-error reductions when compared with learned standalone models. This is the first initiative using ensemble learning for generating performance prediction models. These promising results encourage further research in this direction.
Palabras clave: DATA-INTENSIVE WORKFLOWS , ENSEMBLE LEARNING , GENE EXPRESSIONS ANALYSIS EXPERIMENTS , PERFORMANCE PREDICTION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.217Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/100324
DOI: http://dx.doi.org/10.1007/s10586-015-0481-5
URL: https://link.springer.com/article/10.1007/s10586-015-0481-5
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Monge Bosdari, David Antonio; Holec, Matej; Zelezný, Filip; Garcia Garino, Carlos Gabriel; Ensemble learning of runtime prediction models for gene-expression analysis workflows; Springer; Cluster Computing-the Journal Of Networks Software Tools And Applications; 18; 4; 12-2015; 1317-1329
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES