Artículo
Lifting properties in operator ranges
Fecha de publicación:
01/2009
Editorial:
University of Szeged
Revista:
Acta Scientiarum Mathematicarum (Szeged)
ISSN:
0001-6969
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given a bounded positive linear operator A on a Hilbert space H we consider the semi-Hilbertian space (H, <,>_A), where <ℇ, n >_A =< Aℇ,n>. On the other hand, we consider the operator range R(A^1/2) with its canonical Hilbertian structure, denoted by R(A^1/2). In this paper we explore the relationship between different types of operators on (H, <,>_A) with classical subsets of operators on R(A^1/2), like Hermitian, normal, contractions, projections, partial isometries and so on. We extend a theorem by M. G. Krein on symmetrizable operators and a result by M. Mbekhta on reduced minimum modulus.
Palabras clave:
A-OPERATORS
,
OPERATOR RANGES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Arias, Maria Laura; Corach, Gustavo; Gonzalez, Maria Celeste; Lifting properties in operator ranges; University of Szeged; Acta Scientiarum Mathematicarum (Szeged); 75; 3; 1-2009; 635-653
Compartir