Mostrar el registro sencillo del ítem

dc.contributor.author
Maestripieri, Alejandra Laura  
dc.contributor.author
Martinez Peria, Francisco Dardo  
dc.date.available
2020-03-19T18:32:48Z  
dc.date.issued
2007-12  
dc.identifier.citation
Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Schur complements in Krein spaces; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 59; 2; 12-2007; 207-221  
dc.identifier.issn
0378-620X  
dc.identifier.uri
http://hdl.handle.net/11336/100306  
dc.description.abstract
The aim of this work is to generalize the notions of Schur complements and shorted operators to Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property) acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[s]of A to S is defined. The basic properties of A/ are developed and different characterizations are given, most of them resembling those of the shorted of (bounded) positive operators on a Hilbert space.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Verlag Ag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
KREIN SPACES  
dc.subject
SCHUR COMPLEMENT  
dc.subject.classification
Otras Matemáticas  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Schur complements in Krein spaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-18T16:16:27Z  
dc.identifier.eissn
1420-8989  
dc.journal.volume
59  
dc.journal.number
2  
dc.journal.pagination
207-221  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Martinez Peria, Francisco Dardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Integral Equations and Operator Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00020-007-1523-z  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00020-007-1523-z  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1809.01695