Mostrar el registro sencillo del ítem

dc.contributor.author
Longo, Gabriel Sebastian  
dc.contributor.author
Pérez Chávez, Néstor Ariel  
dc.contributor.author
Szleifer, Igal  
dc.date.available
2020-03-18T19:51:49Z  
dc.date.issued
2019-06  
dc.identifier.citation
Longo, Gabriel Sebastian; Pérez Chávez, Néstor Ariel; Szleifer, Igal; How protonation modulates the interaction between proteins and pH-responsive hydrogel films; Elsevier Science London; Current Opinion In Colloid & Interface Science; 41; 6-2019; 27-39  
dc.identifier.issn
1359-0294  
dc.identifier.uri
http://hdl.handle.net/11336/100108  
dc.description.abstract
Hydrogels of pH-responsive polymers are promising candidates for the design of functional biomaterials. In this context, understanding the complexity of the interaction between these materials and proteins is essential. A recently developed molecular-level equilibrium theory for protein adsorption on hydrogels of cross-linked polyacid chains allows for modeling size, shape, charge distribution, protonation state and conformational degrees of freedom of all chemical species in the system; proteins are described using a coarse-grained model of their crystallographic structure. This review summarizes our recent studies, which have focused on understanding how the interaction between proteins and pH-responsive hydrogel films depends on the pH and salt concentration, both in single protein solutions and mixtures. In particular, we discuss the key role that protonation plays in mediating the polymer-protein electrostatic attractions that drive adsorption. Deprotonation of the polyacid network modifies the nano-environment inside the hydrogel; the local pH drops inside the film. In single protein solutions, protonation of amino acid residues in this lower-pH environment favors adsorption to the hydrogel. Upon adsorption, the net charge of the protein can be several units more positive than in the solution. The various amino acids protonate differently, in a non-trivial way, which gives flexibility to the protein to enhance its positive charge and favor adsorption under a wide range of conditions. In binary and ternary protein solutions, amino acid protonation is the decisive factor for selective adsorption under certain conditions. We show that the polymer network composition and the solution pH can be used to separate and localize proteins within nanometer-sized regions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science London  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ACID-BASE EQUILIBRIUM  
dc.subject
PH-RESPONSIVE HYDROGELS  
dc.subject
PROTEIN ADSORPTION  
dc.subject
PROTONATION  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
How protonation modulates the interaction between proteins and pH-responsive hydrogel films  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-16T14:04:24Z  
dc.journal.volume
41  
dc.journal.pagination
27-39  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Longo, Gabriel Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Pérez Chávez, Néstor Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Szleifer, Igal. Northwestern University; Estados Unidos  
dc.journal.title
Current Opinion In Colloid & Interface Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1359029418301183  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cocis.2018.11.009