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Abstract. A general numerical tool for the analysis of three-dimensional bimaterial interface cracks is
presented in this paper. The proposed tool is based on a multidomain formulation of the Boundary
Element Method (BEM), with the crack located at the interface of the domain. Mixed mode stress
intensity factors are computed along the three-dimensional crack fronts using the Energy Domain
Integral (EDI) methodology and decoupled via the Interaction Integral. The capability of the proce-
dure is demonstrated by solving a number of examples. The last of these examples consists in a thick
centre cracked panel for which the behaviour of the J-integral and the mixed-mode stress intensity
factors along the crack front is studied as a function of the material mismatch.

Key words: Energy domain integral, interfacial fracture mechanics, interaction integral, three-dimensional
interface cracks.

1. Introduction

The overall mechanical properties of composite materials depend heavily on the
nature of the bond at bimaterial interfaces. Unfortunately, interfacial delamination
and fracture are commonly observed problems that may ultimately limit the use of
these materials, which range from ceramic and metal matrix composites for the aero-
space industry to nanoscale structures for microelectronics applications. The need to
improve the fracture toughness of composite materials has led to significantly pro-
gress in the area of interfacial fracture mechanics. During the past few decades,
comprehensive analyses have been carried out, and many questions regarding the
mechanic of interface fracture have been answered. However, progress has been gen-
erally mainly focused in the two-dimensional idealization of an interface crack, and
limited work has been conducted on the three-dimensional aspects of interface frac-
ture. This is in part due to the extreme complexity of such problems and the very
large computational efforts required for their numerical analysis. However, given the
material mismatch at the interface boundary, it is expected that the three-dimensional
effects play a more significant role in flawed bimaterial structures than in their
homogenous counterparts.

The BEM has been extensively employed to analyse a variety of problems involv-
ing two- and three-dimensional interface cracks. Among others, two-dimensional
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BEM analysis are reported by Cho et al. (1992), who analysed the problem of inter-
face cracks in dissimilar anisotropic materials; Yuuki and Xu (1994), who evaluated
the effect of residual stresses; Sladeck and Sladeck (1997), who conducted a study
on T-stresses; Kwon and Dutton (1991), who tackled the problem of cracks in the
direction normal to the bimaterial interface; and Selcuk et al. (1994) and Beer (1993),
who used BEM for the prediction of interfacial crack propagation. Likewise, Parı́s
et al. (1996) and Varna et al. (1997) studied the effect of crack-face contact on the
fibre/matrix debonding, while Liu and Xu (2000) considered the effect of the fibre
coating on the debonding process. Three dimensional analyses can be found in the
papers by Raveendra and Banerjee (1991) and Wen and Aliabadi (1999). While in the
former stress intensity factors are computed using displacement results, the later also
explores methods based on stress results and energy principles.

Although many authors propose displacement and stress extrapolation methods
to determine stress intensity factors from BEM results (see for example Yuuki and
Cho, 1989; Tan and Gao, 1990; Raveendra and Banerjee, 1991; He et al., 1994; Mao
and Sun, 1995; Wen and Aliabadi, 1999) J-integral methods constitute a more robust
approach. Note that BEM is specially suited for the evaluation of path indepen-
dent integrals, since the required stresses, strains and derivatives of displacements
at internal points can be directly obtained from their boundary integral representa-
tions. It also has been shown that BEM produces more accurate stresses and strains
at internal points when compared with other numerical techniques, and therefore
better results can be achieved. Application of the J-integral methodology for two-
dimensional interface cracks can be found in the works by Miyazaki et al. (1993) and
de Paula and Aliabadi (1997).

The J-integral as devised by Rice (1968) characterizes the crack driving force for
two-dimensional problems, therefore, for general three-dimensional cases involving
cracks of arbitrary shape an alternative form for the J-integral is needed. Three basic
schemes have evolved for the numerical computation of the J-integral in three dimen-
sions: virtual crack extension methods (Park, 1974; Hellen, 1975) generalization of
Rice’s contour integral (Carpenter et al., 1986), and domain integral methods (Moran
and Shih, 1987; Nikishkov and Atluri 1987; Saliva et al., 2000). Among the avail-
able schemes for the numerical computation of the J-integral in three dimensions,
the Energy Domain Integral (EDI) due to Moran and Shih (1987) is employed in
this work. Previous work by one of the authors of this paper has proved the ver-
satility and efficiency of the EDI in the three-dimensional BEM analysis of isotropic
cracked bodies (Cisilino et al., 1998; Cisilino and Aliabadi, 1999). Together with the
EDI the interaction or M1-integral methodology due to Chen and Shield (1997) is
employed for decoupling the J-integral into the mixed-mode stress intensity factors.
The M1-integral methodology has been recently reported in a number of papers using
FEM to compute stress intensity factors along three-dimensional interface cracks (see
Gosz, Dolbow and Moran 1998; Nagashima; Omoto and Tani, 2003). Using BEM,
the M1-integral methodology has been only implemented for two-dimensional inter-
face problems by Miyazaki et al. (1993) and by Cisilino and Ortiz for three dimen-
sional homogenous bodies (Cisilino and Ortiz, 2004).
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Figure 1. Schematic representation of bimaterial plate with an interface crack: coordinate system in
the region of the crack tip and remote tension and shear loading.

2. Crack tip field and bimaterial interfaces

2.1. Singular stress field

Consider the plane problem of an open interface crack between two dissimilar iso-
tropic materials as shown in Figure 1. For convenience, we adopt a local polar coor-
dinate system centred at the crack tip, and we label the material occupying the upper
half-plane as material 1 with Young modulus E1 and Poisson ratio ν1. The mate-
rial occupying the lower half-plane has Young modulus E2 and Poisson ratio ν2. The
stress field very close to the crack front corresponds to the asymptotic field based
on the two-dimensional solutions due to Williams (1959). The form of the bimateri-
al stress field given by Rice et al. (1990) (with the addition of Mode III) is

σij = 1√
2πr

{
Re

[
Kriε

]
σ̃ I

ij (θ, ε)+ Im
[
Kriε

]
σ̃ II

ij (θ, ε)+KIIIσ̃
III
ij (θ)

}
, (1)

where r and θ are the in-plane coordinates of the plane normal to the crack front
(see Figure 1), K is defined as the complex stress intensity factor for the in-plane
modes, K = KI + iKII, and σ̃ij are the angular variations of stress components for
each mode (The explicit form of the asymptotic stress and displacement components
are given in Appendix A). The oscillatory index ε is:

ε = 1
2π

ln
[
κ1µ2 +µ1

κ2µ1 +µ2

]
= 1

2π
ln

[
1−β

1+β

]
. (2)
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Here, κj = 3 − 4νj for plane strain and κj = (3 − νj )/(1 + νj ) for plane stress, µj =
Ej/2(1 + νj ) is the shear modulus, and the subscripts j = 1, 2 refer to the materi-
als above and below the crack plane, respectively. Furthermore, β is one of Dundurs’
parameters. In two-dimensional problems, the solution can be characterized by the
two Dundurs’ parameters, and they are defined as Dundurs (1969):

α = µ1(κ2 +1)−µ2(κ1 +1)

µ2(κ1 +1)+µ1(κ2 +1)
, β = µ1(κ2 −1)−µ2(κ1 −1)

µ2(κ1 +1)+µ1(κ2 +1)
. (3)

Unlike the two-dimensional cases, the above parameters are not sufficient to
characterize the full-field deformation of three dimensional boundary value prob-
lems. Note that a bimaterial combination yields different Dundurs’ parameters under
plain-strain and plane-stress conditions.

2.2. Near tip contact zone

Comninou (1977) showed that the solutions for the interface crack must allow for
a contact zone at the crack tips. Thus, linear elastic fracture mechanics procedures
(i.e. characterizing crack growth in terms of KI + iKII) are valid when the inevitable
nonlinear contact zone at the crack tip is sufficiently small (Rice, 1988). An elemen-
tary estimation of the contact zone size, assuming that it is small compared to crack
size, is given by finding the largest distance rc from the crack tip for which the open-
ing gap between the crack faces vanishes. Assuming that ε > 0 (if not we can just
exchange the labels “1” and “2”) and based on the displacement asymptotic fields
due to Williams (1959) and Rice (1988) proposed the following expression for com-
puting rc:

rc =L exp[−(ϕ +π/2)/ε], (4)

where L stands for the crack length and ϕ gives the direction of the remote traction
vector as illustrated in Figure 1. An interesting checking of the adequacy of this esti-
mation can be found in Paris et al. (1996), showing that contact zone is smaller than
the interpenetration zone.

In general, ε increases with the increase of stiffness ratio, µ1/µ2. For example, if
we take the material combination given by cork (with ν ≈ 0) and alumina (Al2O3)
so that µ1/µ2 ≈ 0, then ε yields its largest feasible value (at least for solids with
ν � 0), namely, ε = 0.175. Representative values of ε are considerably lower for var-
ious combinations of interest for practical metal and nonmetal interfaces. For exam-
ple Hutchinson et al. (1987) give ε = 0.039 for Ti/Al2O3, ε = 0.028 for Cu/Al2O3,
ε=0.019 for Nb/Al2O3, ε=0.011 for Si/Cu, ε=0.005 for MgO/Ni, and ε=0.004 for
Au/MgO based on elastic parameters that they tabulated.

If one adopts rc/L < 0.01 as a suitable restriction on rc so that the small scale
contact zone concept may be applied, that is, the field may be regarded as being
characterized by the complex K, then one requires ϕ > −π/2 + 4.605ε (Rice, 1988).
Thus, is required for validity of the linear elastic fracture mechanics approach out-
lined above that ϕ > −50◦ when ε = 0.15, ϕ > −77◦ when ε = 0.05, and ϕ > −87◦

when ε = 0.01. These restrictions will generally be met in practical cases for which
there are some nonnegligible tensile component of the loading relative to the crack
(Hutchinson et al., 1987).
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Figure 2. (a) Definition of the local orthogonal Cartesian coordinates at point η on the crack front,
(b) Virtual crack front advance.

2.3. Three-dimensional energy release rate

Based on energy arguments, the relationship between the energy release rate G (or the
equivalent J-integral in the case of an elastic medium) and the stress intensity factors
of an interface crack is Nakamura (1991):

G= 1

E∗ cosh2
(πε)

[
K2

I +K2
II

]+ 1
2µ∗ K2

III. (5)

Here, E∗ and µ∗ are the average/effective plane-strain tensile modulus and shear
modulus of the two materials, respectively, and they are:

1
E∗ = 1

2

(
1−ν2

1

E1
+ 1−ν2

2

E2

)
,

1
µ∗ = 1

2

(
1
µ1

+ 1
µ2

)
. (6)

3. J -integral and stress intensity factor computation

3.1. The energy domain integral

Consider a three-dimensional crack front with a continuously turning tangent as
depicted in Figure 2a. Define a local coordinate system x∗ at position η, where the
crack energy release rate is evaluated, given by x∗

1 normal to the crack front, x∗
2 nor-

mal to the crack plane, and x∗
3 tangent to the crack front.

Following Natha and Moran (1993), the general crack-tip contour integral along
three-dimensional crack front takes the form (see Figure 2)

I (η)= lim
C→0

δl (η)

∫

C(η)

(
wδkj −σ ∗

ij u
∗
i,k

)
nj dC, (7)

where w is the strain energy density, σ ∗
ij and u∗

i,1 are Cartesian components of stress
and displacement derivatives expressed in the local system x∗, δl (η) is the local crack
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Figure 3. Tubular domain surrounding a segment of the crack front.

extension, nj is the unit vector normal to the contour C (which lies in the x∗
1 − x∗

2
plane) and dC (η) is the differential of the arc length C (see Figure 2a). It is worth
noting that, although Equation (7) comes from a two-dimensional analysis, it applies
for the three-dimensional case, as in the limit as C → 0, plain strain conditions pre-
vail so that three-dimensional fields approach the plane problem.

In order to derive the equivalent domain representation of Equation (7), we con-
sider a small segment Lc of the crack front that lies in the local x∗

1 − x∗
3 plane as

shown in Figure 2(b). Next we assume that the segment undergoes a virtual crack
advance in the plane of the crack, and we define the magnitude of the advance at
each point η as �a (η). We note that �a (η) varies continuously along Lc and van-
ishes at each end of the segment. Now let:

Ī =
∫

LC

I (η)�a(η)dη, (8)

where I (η) is the integral defined in Equation (7). When I (η) belongs to the point-
wise energy release rate, Ī gives the total energy released when the finite segment Lc

undergoes the virtual crack advance.
The appropriate domain form of the pointwise crack-tip contour integral can be

obtained from Equation (8) by considering a tubular domain V surrounding the
crack segment (see Figure 3). As shown in the figure, the surface St is formed by
translating the contour C along the segment Lc, and So stands for the outer surface
of V including the ends. Next an auxiliary function q is introduced, which is suffi-
ciently smooth in V and it is defined on the surfaces of V as follows:

q =
{

�a(η) · δl(η) on St,

0 on So.
(9)

Finally, in the limit as the tubular surface St is shrunk onto the crack segment Lc,
and in the absence of crack face tractions, we obtain the domain integral:

Ī =
∫

V

(
σ ∗

ij u
∗
j,k −wδki

)
q,i

dV. (10)
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In the evaluation of the energy release rate in the absence of body forces the inte-
gral given by Equation (10) reduces to the domain representation of the familiar
J-integral. A simple relationship between J (η) and the point-wise crack-tip integral
I (η) can be obtained if it is assumed that I (η) is constant along the segment Lc.
Then, it follows directly from Equation (8) that

J (η)= Ī
∫
Lc

�a(η)dη
. (11)

3.2. The interaction integral

In this section, the interaction or M1-integral methodology for decoupling three-
dimensional mixed-mode stress intensity factors is presented. This methodology is
based on the principle of superposition. Let us consider two equilibrium states with
field variables denoted by the superscripts (1) and (2), respectively. Superposition of
the two equilibrium states leads to another one, (1+2), for which the stress intensity
factors K

(1+2)
j can be written as:

K
(1+2)
j =K

(1)
j +K

(2)
j (j = I, II, III). (12)

The stress intensity factors can be related to the J-integral for the superimposed state
(1+2) using Equation (5), what results in:

J (1+2) = 1

E∗ cosh2
(πε)

[(
K

(1+2)

I

)2
+

(
K

(1+2)

II

)2
]

+ 1
2µ∗

(
K

(1+2)

III

)2
, (13)

where E∗ and µ∗ are the effective Young’s and shear modulus defined in Section 2,
and ε stands for the bimaterial constant defined in Equation (2). Equation (13) can
be rewritten in terms of the stress intensity factors for the equilibrium states (1) and
(2), to give:

J (1+2) =J (1) +J (2) + 2

E∗ cosh2
(πε)

[
K

(1)

I K
(2)

I +K
(1)

II K
(2)

I

]
+ 1

µ∗ K
(1)

III K
(2)

III . (14)

Then, the M1-integral is defined as:

M1 =J (1+2) −J (1) −J (2) = 2

E∗ cosh2
(πε)

[
K

(1)

I K
(2)

I +K
(1)

II K
(2)

I

]
+ 1

µ∗ K
(1)

III K
(2)

III . (15)

Using Equation(10) a domain representation of the M1-integral can be obtained as
follows:

M1 =
∫

V

(
σ

∗(1)
ij u

∗(2)
j,k +σ

∗(2)
ij u

∗(1)
j,k −σ

∗(1)
ij ε

∗(2)
ij δki

)
q,idV. (16)

For the decoupling of the mixed-mode stress intensity factors, the problem under
consideration is selected as equilibrium state (1), so that the field variables σ

∗(1)
ij and

u
∗(1)
j,k will be obtained in this work from the results of a boundary element analysis.

On the other hand, the plain-strain solutions for the asymptotic crack-tip fields given
in Appendix 1 with prescribed stress intensity factors KI, KII and KIII, are selected as
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equilibrium state (2). The field variables related with the equilibrium state (2), σ
∗(2)
ij ,

u
∗(2)
j,k and ε

∗(2)
ij can be calculated from these asymptotic solutions using basic contin-

uum mechanics relationships. Finally, the M1-integral defined in Equation (16) can
be computed using the field variables related with the equilibrium states (1) and (2).
By using three sets of asymptotic solutions, (K(2)

I = 1, K
(2)

II = 0, K
(2)

III = 0), (K(2)

I = 0,
K

(2)

II = 1, K
(2)

III = 0) and (K(2)

I = 0, K
(2)

II = 0, K
(2)

III = 1) it is possible to obtain the stress
intensity factor solutions for individual modes from Equation (15) as follows:

K
(1)

I = E∗ cosh2
(πε)

2
Ma

1 ,

K
(1)

II = E∗ cosh2
(πε)

2
Mb

1 ,

K
(1)

III =
E∗ cosh2

(πε)

2
Mc

1 , (17)

where Ma
1 , Mb

1 and Mc
1 are the values of the M1-integral calculated using the three

sets of asymptotic solutions.
It is important to point out two limitations for the present implementation of the

M1-integral. The first one is related with the shape of the crack front. The above pro-
cedure is only valid for straight crack fronts, since the application of the M1-integral
to curved crack fronts requires the inclusion of extra terms in Equation (16) (Gosz
et al., 1998). The second limitation concerns to the validity of the M1-integral in the
region near the terminal point of the interface crack at a free surface. It turns out
that the three-dimensional singularity field near the terminal point of the interface
crack at the free surface is more singular than 1/

√
r singularity of the interior fields.

For a wide selection of material pairs, reported results show that the eigenvalue of
the dominant singularity, O(r−s), is real and s increases from 0.5 to 0.75 as the mod-
uli mismatch increases (Bazant and Estenssorrow, 1979; Barsoum and Chen, 1991;
Ghahremani and Shih, 1992). Since the M1 integral is based upon the assumption
that the near-crack tip fields are asymptotic to the plane strain fields (see Section 2),
the above introduced procedure is not applicable at the intersection of the crack front
with a free surface. Please also note that the loss of dominance of the 1/

√
r singu-

larity at the free surface is also a limitation for the applicability of the J-integral.

4. Boundary element analysis

The computation of the J-integral and stress intensity factors via the M1-integral
methodology were implemented in the BEM code as a post-processing procedure,
and so it could be applied to the results from a particular model at a later stage. In
order to account for the different material properties at both sides of the crack, a
multiple domain BEM formulation was used (see Figure 4). The BEM formulation
follows standard procedures, for which the equilibrium and continuity conditions are
enforced at the common interface between the domains (Brebbia et al., 1984).

Most of the problems analyzed in this work possess symmetry in their geometric
configurations and material properties. For such cases, conventionally, only the sym-
metric portion of the domain is analysed by prescribing appropriate boundary condi-
tions over the symmetry planes. In this work however, a procedure is implemented for
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Figure 4. Schematic representation of the multidomain technique for a nonhomogeneous body.

modelling symmetric domains subjected either to symmetric or antisymmetric load-
ings which does not require neither the discretization nor the prescription of bound-
ary conditions over the symmetry planes. This procedure redounds in both computer
memory savings and numerical efficiency for the BEM implementation. Moreover,
since loadings acting on a symmetric domain can always be decomposed into sym-
metric and antisymmetric parts, a single BEM discretization can be used to handle
arbitrary loadings. Due to space restrictions the details of the implementation cannot
be given here. For a comprehensive description of the procedure the reader is referred
to the work by Kaijevic and Saigal (1995).

4.2. Displacement derivatives, stresses and strains

4.2.1. Internal points
As has been stated in Section 3, the computation of the J-integral and the appli-

cation of the M1-integral methodology requires the stress and displacement deriva-
tive fields σ ∗

ij and u∗
j,k to be known within the integration volume V. Although these

quantities must be expressed in the local crack-front coordinate system x∗, in this
work, and for the sake of simplicity, they will be first computed in the global system
x and later transformed to the local system x∗. Bearing this in mind, and in order
to integrate the computation of the fracture parameters into the BEM formulation,
derivatives of the displacements at internal points X′ are obtained from their bound-
ary integral representations. The integral equation for the displacement derivatives
results from the analytical differentiation of the well-known displacement boundary
integral equation for a point X′ located in the model domain (Brebbia et al., 1984):

ui,m
(
X′)=

∫



U ∗
ij,m

(
X′, x

)
t (x)d(x)−

∫



T ∗
ij,m

(
X′, x

)
u (x)d(x), (18)

where the terms U ∗
ij,m and T ∗

ij,m are the derivatives of the fundamental displacement
U ∗

ij , and traction T ∗
ij solutions, and the boundary  corresponds to that of the zone

where the point X′ lies on.
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Figure 5. Local Cartesian system for boundary stress calculation.

Once the displacement derivatives ui,m are known, stresses σij and strains εij can
be computed using the basic continuum mechanics relationships:

εij = 1
2

(
ui,j +uj,i

)
, (19)

σij =2µεij + 2µν

1−2ν
εkkδij . (20)

4.2.2. Boundary points
Displacement partial derivatives ui,m at boundary nodes could be obtained from

Equation (18), by taking the limit as point X′ moves to the boundary, i.e. X′ →x ′.
However, this procedure is computationally expensive because of the occurrence of
hypersingular integrands. In order to avoid this difficulty, stresses and strains, as
well as the displacements on the model surface are evaluated in this work from the
boundary displacements and tractions, following a procedure similar to that used in
FEM computations. Consider with this purpose a local Cartesian system, (x0

1 , x
0
2 , x

0
3)

such that x0
3 is the unit vector in the normal direction to the boundary element (see

Figure 5). If u0
j , ε0

ij , σ 0
ij and t0

j are the displacements, strains, stress and tractions in
the local system, stress components in the normal direction can be written as:

σ 0
i3 = t0

i , i =1,2,3. (21)

The remaining stress tensor components, σ 0
11, σ 0

12 and σ 0
22 can be expressed in terms

of t0
3 and the tangential strain tensor components ε0

11, ε0
12 and ε0

22, by eliminating ε0
33

from the general expression of Hooke’s law. Thus,

σ 0
11 = 1

1−ν

[
νt0

3 +2µ
(
ε0

11 +νε0
22

)]
, (22a)

σ 0
22 = 1

1−ν

[
νt0

3 +2µ
(
ε0

22 +νε0
11

)]
, (22b)

σ 0
12 =2µε0

12. (22c)
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Strain components ε0
ij can be found using Equation (19), now applied in the local

coordinate system. It is worth nothing that displacement derivatives in Equation (19)
are initially evaluated in the intrinsic element directions (ξ1, ξ2), since as it usual in
BEM, boundary displacements are given in terms of the piecewise parametric repre-
sentation (shape functions) of intrinsic coordinates:

ui (ξ1, ξ2)=
N∑

n=1

�n (ξ1, ξ2) un
i , (23)

where �n are the shape functions, un
i are the nodal values of the displacements, and

N is the number of element nodes. From (23) it follows

∂ui

∂ξj

=
N∑

n=1

∂�n

∂ξj

un
i . (24)

Finally, the derivatives of the displacements in the global system are computed.
Using chain differentiation, derivatives of the displacements in the global system,
ui,m, can be related to the derivatives of the displacements in the intrinsic boundary
element directions, ∂ui/∂ξj , as follows:

∂ui

∂ξj

= ∂ui

∂xm

∂xm

∂ξj

, (25)

where ∂xm/∂ξj is the Jacobian matrix of the transformation. The nine components
of the displacement derivatives ui,m can be retrieved by solving for each case a sys-
tem of equations constructed using expressions (25). For further details the reader is
referred to the works by Cisilino (2000) or Cisilino et al. (1998).

4.3. Implementation

As has been stated in Section 2, expressions (11) and (17) allow the computation of
J-integral and the mixed-mode stress intensity factors at any position η on the crack
front. In each case, the evaluation of a volume integral within a domain enclosing a
segment of the crack front Lc is required. A natural choice here is to make η coinci-
dent with the element nodes on the crack front, while Lc is taken as the element or
element sides at which points η lies (see Figure 6). The portion of the model domain
in which the volume integrals are evaluated is discretized using 27-noded isoparamet-
ric (brick) cells, over which stresses, strains and displacements derivatives are approx-
imated by products of the cell shape functions �i and the nodal values of σij , εij and
ui,j . Nodal values of these variables are computed following the procedures intro-
duced in Sections 4.2.1 and 4.2.2, depending on whether the node is internal or lies
on the model boundary. Volume discretization is designed to have web-style geometry
around the crack front, while the integration volumes are taken to coincide with the
different rings of cells. This is illustrated in Figure 7, where the frontal face of the
model has been partially removed to show the crack and the integration domains.

As depicted in Figure 6, three different cases need to be considered, depending on
whether the node of interest M is in the middle of an element side (mid-node), it is
shared by two elements (corner node), or it is located coincident with the external
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Figure 6. Schematic representation of the volume cells in the crack front region illustrating the virtual
crack extensions for a corner node, a mid-node and a surface node.

Figure 7. (a) Problem geometry, (b) Boundary Element discretization, (c) Integration domains.

surface (surface node). If the node M is a mid-node or surface node, Lc (the segment
of the crack front over which the M1-integral is computed) spans over one element,
connecting nodes M −1, M, and M +1 and nodes M −2, M −1 and M, respectively.
On the other hand, if M is a corner node, Lc spans over two elements, connecting
nodes from M −2 to M +2.

The auxiliary function q was introduced in Section 3.1 in order to model the
virtual crack front advance. Since the virtual crack advance can adopt any arbi-
trary shape, the only requirement for function q is to be sufficiently smooth within
the integration volume V as the evaluation of the EDI requires of its differen-
tiation (Moran and Shih, 1987). In this work q is defined to vary quadratically
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in the directions tangential and normal to the crack front. Within this approach,
and considering that the evaluation point η is at the middle of the crack front
segment Lc, and r0 is the radius of the integration domain, the function q is
written as:

q(x∗)=

∣∣∣∣∣∣∣
1−



 x∗
3

LC

/
2





2
∣∣∣∣∣∣∣
·
[

1−
(

r

r0

)2
]

, (26)

where r is the distance from the crack front in the x∗
1 − x∗

2 plane as depicted in
Figure 2.

Although Moran and Shih (1987) have shown that for the EDI the computed
value of J is insensitive to the selection of the q function, it has been found that the
shape of the q function is relevant for the accuracy of the computations. Note that
in contrast the path independent integrals, the EDI requires of the computation of
quantities at crack front vicinity to calculate the domain integral. It is well known
that accuracy of computed quantities at these points is lower than at those far from
the crack front. The key feature for the excellent performance of the EDI under these
circumstances is the behaviour of the auxiliary function q in the crack tip vicinity.
Note that for the definition of q given in Equation (26), the gradient q,i tends to zero
as r tends to zero (i.e. in the vicinity of the crack front), resulting that the contribu-
tion to J of the crack front fields is not significant (see Equation 10). As a conse-
quence, the zone of the integration domain with the lowest accuracy in the results
has a marginal contribution to the value of J. This fact also allows avoiding the use
of quarter point or special crack tip elements to enhance the accuracy of the results
in this zone. The bi-quadratic definition of q has been employed with excellent results
in the computation of EDI for cracks in homogeneous materials in a previous work
by one of the authors of this paper (Cisilino et al., 1998). Further details and discus-
sion on the selection of the function q can be found in a recent work by the authors
of this paper (Cisilino et al., 2004).

Function q is specified at all nodes within the integration volumes. Consistent with
the isoparametric formulation, these q-values are given by:

q =
27∑

i=1

�iQi, (27)

where �i are the shape functions defined within each volume cell and Qi are the
nodal values for the ith node. From the definition of q (see Equation (9)), Qi = 0 if
the ith node is on S0, while for nodes inside V, Qi are given by interpolating between
the nodal values on Lc and S0. Following standard manipulations:

q,j =
27∑

i=1

3∑

k=1

∂�i

∂ζk

∂ζk

∂xi

Qi, (28)

where ζk are the coordinates in the cell isoparametric space and ∂xk/∂ξj is the Jaco-
bian matrix of the transformation.
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If Gaussian integration is used, the discretized forms for the J-integral in Equa-
tion (10), and the M1-integral in Equation (16) are given by:

Ī =
∑

cells inV

m∑

p=1

{(
σ ∗

ij u
∗
j,k −σ ∗

ij ε
∗
ij δki

)
q,idet

(
∂xj

∂ζk

)}

p
wp (29)

and

M1 =
∑

cells inV

m∑

p=1

{(
σ

∗(1)
ij u

∗(2)
j,k +σ

∗(2)
ij u

∗(1)
j,k −σ

∗(1)
ij ε

∗(2)
ij δki

)
q,idet

(
∂xj

∂ζk

)}

p
wp, (30)

respectively, where m is the number of Gaussian points per cell, and wp are their
weighting factors.

5. Examples

In this section the accuracy of BEM formulation and J-integral and stress inten-
sity factor computations are assessed by considering a number of examples. The first
examples have two-dimensional characteristics or deal with homogeneous materials
(namely the embedded circular crack in a cylindrical bar and the panel with a centre
slant crack) in order to allow comparisons with results from the bibliography. Finally,
an example with three-dimensional characteristics (a thick centre-cracked bimaterial
panel) is presented and the results discussed.

5.1. An external circumferential crack in a cylindrical bar

The first example is depicted in Figure 8(a), and it consists on an external circum-
ferential crack in a cylindrical bar subjected to remote tension σ and torsion T.
The material of the bar is homogenous, and thus, the traction on torsion load cases
result in pure Mode-I and Mode-III fracture modes, respectively. The radius of the
bar is b = 5a and its height h = 24a, where a is the crack depth. Due to the sym-
metry in the model geometry, only one quarter of the problem is considered for
the analysis of both load cases. The model is discretized using two zones as illus-
trated in Figure 8(b), and symmetrical and skew-symmetrical boundary conditions
are applied implicitly for the tension and torsion load cases respectively (note the
absence of discretization on the symmetry planes). A total of 96 elements and 453
nodes are employed in the model discretization. Four rings of cells with radii r/a =
0.25,0.5,0.75 and 1 are accommodated around the crack front for K computations.
Integration domains are constructed using 108 cells.

Figure 8(c) and (d) illustrate the deformed configuration for the tension and tor-
sion load cases, respectively. Computed stress intensity factors for the tension load
case are reported in Table 1 at two positions on the crack front: for a point located
coincident with the symmetry plane, θ/(π/2) = 0, and for a point at the interior
of the discretized portion of the model, θ/(π/2) = 0.5. Results are normalized with
respect to σ

√
πa and compared with that reported by Tada et al. (2000). Computed

values show to be almost independent with the integration volume, and constant
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Figure 8. Embedded circular crack in a cylindrical bar, (a) geometry and dimensions, (b) model dis-
cretization, (c) deformed mesh for the traction load case, (d) deformed mesh for the torsion load
case.

Table 1. Normalized KI results for the external circumferential crack in a cylindrical bar under ten-
sion.

θ
/

π

2 r/a Average Tada et al. (2000) �[%]

0.25 0.50 0.75 1.00

0.00 1.177 1.183 1.193 1.197 1.188 1.256 −5.41
0.50 1.180 1.185 1.192 1.197 1.189 1.256 −5.33

along the crack front. Their deviation from the reference value is around 5%, which
is considered adequate enough for the mesh used.

Results for the torsion load case are presented in Table 2, and normalized with
respect to σ

√
πa. In this case the deviation from the reference value is less than 3%.

On the other hand, the smallest integration volumes (r/a=0.25) do not allow obtain-
ing accurate results and they are excluded from the analysis.



212 J.E. Ortiz and A.P. Cisilino

Table 2. Normalized KIII results for the external circumferential crack in a cylindrical bar under ten-
sion.

θ
/

π

2 r/a Average∗ Tada et al. (2000) �[%]

0.25 0.50 0.75 1.00

0.00 0.278 0.321 0.322 0.324 0.322 0.322 −2.91
0.50 0.278 0.322 0.322 0.325 0.323 0.332 −2.71

∗Result for r/a =0.25 are excluded

Figure 9. (a) Schematic representation of the panel with a center slant crack, (b) Model dimensions,
(c) Boundary element mesh (deformed).

5.2. Tension panel with a slant interface crack

This second example deals with a crack under remote mixed load conditions. It con-
sists on a thin panel with a slant interface crack rotated θ = 45◦ with respect to the
horizontal, and subjected to a uniaxial remote tension σ . A schematic representation
with the problem geometry and dimensions is depicted in Figure 9 together with a
view of the deformed mesh. Specimen dimensions are a =2.5 mm, b=2a, h=3b and
t =a. The model is divided into two zones and discretized using 842 nodes and 171
boundary elements. Normal displacements of the model lateral faces are restricted in
order to simulate a plain strain condition and allow comparison with results from
the bibliography. Twenty elements are used in the crack discretization. Only one ele-
ment is placed in the direction of the thickness of the model. Six rings of cells with
radii r/a = 0.167, 0.33, 0.5, 0.666, 0.833 and 1 are accommodated around the crack
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Table 3. Normalized KI results for the slant crack in a homogeneous panel.

Position r/a Average Miyazaki et al. (1993) �[%]

0.250 0.333 0.4165 0.500

Surface 0.431 0.431 0.431 0.431 0.431 0.433 −0.46
Mid-plane 0.430 0.430 0.430 0.431 0.430 0.433 −0.70

Table 4. Normalized KII results for the slant crack in a homogeneous panel.

Position r/a Average Miyazaki et al. (1993) �[%]

0.250 0.333 0.4165 0.500

Surface −0.378 −0.379 −0.380 −0.380 −0.379 −0.386 1.81
Mid-plane −0.380 −0.382 −0.383 −0.383 −0.382 −0.386 1.04

Table 5. Normalized KI results for the slant crack in a bimaterial panel.

Position r/a Average Miyazaki et al. (1993) �[%]

0.250 0.333 0.4165 0.500

Surface 0.367 0.367 0.368 0.368 0.368 0.368 0.22
Mid-plane 0.365 0.365 0.365 0.365 0.365 0.368 0.96

Table 6. Normalized KII results for the slant crack in a bimaterial panel.

Position r/a Average Miyazaki et al. (1993) �[%]

0.250 0.333 0.4165 0.500

Surface −0.466 −0.465 −0.464 −0.462 −0.464 −0.474 2.11
Mid-plane −0.464 −0.465 −0.463 −0.462 −0.464 −0.474 2.11

front for J and K computations. With this purpose 44 cells are employed. Two sets
of materials properties are considered. For the first analysis the plate is considered
homogeneous, and thus, identical material properties are used for both zones. For the
second analysis a set of dissimilar material properties is considered with E1/E2 = 10
and ν1 =ν2 =0.3.

Computed stress intensity factors are presented in Tables 3 and 4 for the homo-
geneous example, while the results for the bimaterial case are reported in Tables
5 and 6. All values are normalized with respect to σ

√
πa and compared to those

reported by Miyazaki et al. (1993). Very good agreement is achieved between the
obtained results and those from the reference.
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Figure 10. (a) Schematic representation of the thick tension plate with a centre interface crack, (b)
Model dimensions.

5.3. Thick tension bimaterial plate with a centre interface crack

For the three-dimensional study a bimaterial plate containing a through crack on
the interface is considered. A schematic representation of the problem geometry and
dimensions are depicted in Figure 10. The example is analysed for seven sets of mate-
rial properties. In first place the homogeneous case is considered in order to allow
the comparison with results reported in the literature. The next five cases correspond
to bimaterial plates with the following ratios of Young modulus: E1/E2 = 3, 10, 20,
40 and 80, and Poisson ratios ν1 =0.2 and ν2 =0.4 (µ1/µ2 =3.5, 11.67, 23.33, 46.67,
93.33 for each case). The oscillatory behaviour in the asymptotic stress and defor-
mation fields is given by the oscillatory parameter (ε = 0, 0.00548, 0.0355, 0.044,
0.0486 and 0.051 for each case), while the extent of the bimaterial mismatch can
be measured by the Dundurs´ parameter (α = 0.448, 0.795, 0.892, 0.944 and 0.972).
Finally, a bimaterial plate composed by glass (E2 = 70.8 GPa, ν2 = 0.22) and epoxy
(E1 =2.79 GPa, ν1 =0.33) with α =0.919, and ε =0.074 is also analysed. Due to the
symmetry of the problem, only one quarter of the problem is modelled. Model dis-
cretization consists of 296 elements and 1341 nodes. Mesh design is similar to that
illustrated in Figure 7. Crack front element dimensions are graded towards the free
surface, being the smallest equal to t/64. Six rings of cells with radii r/a =0.09, 0.15,
0.225, 0.338, 0.5 and 0.75 are employed for J-integral and stress intensity factor com-
putations. The number of cells used with this purpose is 312.

J-integral and stress intensity factor results for the bimaterial plates are plotted in
Figure 11 and Figures 12–14, respectively. The origin of the normalized coordinate
z/t corresponds to the specimen mid-plane. Results are normalized with respect to
the J-integral and stress intensity factor values for a crack in a infinite bimaterial
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Figure 11. J-integral along the crack front for various bimaterial combinations. Error bars indicate
the accuracy of the solution for the homogeneous plate by Raju and Newman (1977).

Figure 12. KI along the crack front for various bimaterial combinations. Error bars indicate the accu-
racy of the solution for the homogeneous plate by Raju and Newman (1977).
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Figure 13. KII along the crack front for various bimaterial combinations.

Figure 14. KIII along the crack front for various bimaterial combinations.
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Figure 15. (a) Normalized energy release rate, and (b) stress intensity factor components along the
crack front for the interface crack in a thin infinite plate with various bimaterial combinations (from
Nakamura and Parks, 1989).

plate, Jo = (K)2/[E∗ cosh2
(πε)] and K = σ∞[(1 + 4ε2)πa]1/2, where E∗ is the effec-

tive elastic modulus defined in Equation (6). Also included in the Figures 11 and
12 are the reference values due to Raju and Newman (1977) for the homogeneous
plate. Reference values were calculated using FEM with a reported accuracy of 5%
for the stress intensity factors. Note that since the reference values for the J-integral
are obtained from their stress intensity factor counterparts using Equation (5), their
accuracy is reduced to around 10%. Accuracy of the reference values is indicated
using the error bars.

Excellent agreement is found between the reported and computed results through-
out the specimen thickness.The only exception are the points located very close to the
free surface (z/t = 0.5), where the computed values are misleading due to the dom-
inance of the corner singularity (Bazant and Estenssoro, 1979; Barsoum and Chen,
1991; Ghahremani and Shih, 1992). Note that with the exception of these points the
deviation of the computed results from those of the reference is always smaller than
the reported accuracy of the reference.

Results in Figure 11 allow seeing the dependence of the J-integral behaviour along
the crack front with the material mismatch. Taking the homogeneous case as a refer-
ence value, the increment in the oscillatory index ε induces a reduction in the value
of J in the zone close to the specimen mid-plane (z/t =0), where a plain strain con-
dition prevails. For the crack front positions close to the free surface (z/t = 0.5),
the J-integral values present a strong dependence with the material mismatch. It can
be observed that for low ε values, J-integral remains almost constant or decreases
towards the free surface. On the other hand, high values of ε make the J-integral
level to increase towards the free surface. This same general behaviour has been
reported by Nakamura (1991), who studied an interface crack embedded in a thin
infinite bimaterial plate (2b = 2h= 60a, t = a/10) using high-resolution FEM models.
Nakamura’s results (Nakamura, 1991) are reproduced in Figure 15, for two differ-
ent situations. The first one corresponds to bimaterial combinations that although
dissimilar, their oscillatory behaviour in the asymptotic stress field disappear as they



218 J.E. Ortiz and A.P. Cisilino

yield ε=0. The second situation corresponds to the limiting case given by an elastic-
rigid substrate model with a mismatch ε = 0.1255. It can be observed that while the
J-integral values diminish towards the free surface for all the material combinations
with ε = 0, for the elastic-rigid substrate case they increase. This behaviour is attrib-
uted to the much greater level of shearing condition affecting the crack tip-field. In
the same sense, results by Nakamura and Parks (1989) have shown that the behav-
iour of energy release rate along the crack front is directly related to the amount of
in-plane and antiplane shear in the crack front surrounding region. In a bimaterial
plate, even in the absence of any remote loading, the antisymmetrical conditions are
induced by the material mismatch along the interface.

Figures 12–14 show the variation of the stress intensity factor components along
the crack front. Due to the relatively small bimaterial mismatch the tensile force is
dominant and values of KII and KIII are relatively small when compared to KI. Near
the free surface, the amplitudes of both antisymmetrical modes increase, while KI

shows a similar behaviour to that exhibited by J-integral. Similar results are also
reported by Nakamura (1991) for the case of thin plates with ε = 0 (see Figure 17).
The obtained results allow concluding that although KI exhibit a general behaviour
similar to that of J-integral, KI level is dominated by the relative stiffness E2/E1

instead of the oscillatory parameter ε. As can be seen in Figure 12, the increment of
E2/E1 is accompanied by a decrement in the KI level at the interior of the specimen.
In this context it is worth to note the response of the glass/epoxy bimaterial, which
although having the largest ε, its relative stiffness E2/E1 =25 makes the KI results to
behave very close to those obtained for E2/E1 = 20. On the other hand, the oscilla-
tory index governs the behaviour of KII (see Figure 13). In this case, small values of
ε induce the highest values of KII, which monotonically diminish with the increment
of ε. Finally KIII behaves almost independently of both ε and E2/E1, as can be seen
from Figure 14.

6. Conclusions

A boundary element methodology for the three-dimensional analysis of bimateri-
al interface cracks has been presented in this paper. The interface crack analysis is
addressed using a multidomain BEM formulation in order to account for the differ-
ent material properties at both sides of the crack. Fracture mechanics parameters,
namely J-integral and stress intensity factors, are computed along the crack front
using the Energy Domain Integral and the Interaction Integral methodologies. These
are implemented as a post-processing technique, and so it can be applied to the
results from a particular model at a later stage. The implementation takes advantage
of the efficiency of the boundary integral equation to directly obtain the required
displacement derivatives, stress and strain fields from their boundary integral rep-
resentations. The efficiency and accuracy of the proposed implementation has been
addressed by analysing a number of examples, and their results compared with those
available in the bibliography.

The devised numerical tool is employed to analyze the case of a thick bimaterial
plate with a centre interface crack under tension. Obtained results allow studying the
dependence of the J-integral and stress intensity factor behaviour with the material
mismatch. It is observed that for the crack front positions close to the free surface,
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the J-integral values present a strong dependence with the material mismatch. For
low values of the oscillatory index ε, J-integral remains almost constant or decreases
towards the free surface. On the other hand, high values of ε make the J-integral
level to increase towards the free surface. KI exhibits a general behaviour similar
to that of J-integral, but its behaviour is dominated by the relative stiffness E2/E1

instead of the oscillatory index ε. The oscillatory index governs the behaviour of KII,
while KIII behaves almost independently of both ε and E2/E1.
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Appendix A

In this Appendix the auxiliary asymptotic solutions of stress σij and displacements
ui , for the extraction of the mode I and II stress intensity factors are given. The
expressions are due to Williams (1959), and they are referred to the local x1 − x2

plane (see Figure 2).

(σ11)j = KI

2
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2πr

[
ωjf

I
11 − 1
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]
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II
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κj =3−4νj , (A.8)

ω1 = e−α(π−θ), (A.9)

ω2 = eα(π+θ), (A.10)

f I
11 =3 cos �̄+2α sin θ cos(θ + �̄)− sin θ sin(θ + �̄), (A.11)

f II
11 =3 sin �̄+2α sin θ sin(θ + �̄)+ sin θ cos(θ + �̄), (A.12)

f I
22 = cos �̄−2α sin θ cos(θ + �̄)+ sin θ sin(θ + �̄), (A.13)

f II
22 = sin �̄−2α sin θ sin(θ + �̄)− sin θ cos(θ + �̄), (A.14)

f I
12 = sin �̄+2α sin θ sin(θ + �̄)+ sin θ cos(θ + �̄), (A.15)

f II
12 =− cos �̄−2αθ cos(θ + �̄)+ sin θ sin(θ + �̄), (A.16)

h11 = 1
1+4α2

[
cos(θ − �̄)−2α sin(θ − �̄)

]
, (A.17)

h12 = 1
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[
cos �̄+2α sin �̄

]
, (A.18)

h13 = sin θ sin �̄, (A.19)

h21 = 1
1+4α2

[
sin(θ − �̄)+2α cos(θ − �̄)

]
, (A.20)

h22 = 1
1+4α2

[− sin �̄+2α cos �̄
]
, (A.21)

h23 = sin θ cos �̄, (A.22)

The difference between the properties of an interface crack under anti-plane strain
and a mode III crack in an homogeneous medium is quite modest, as the displace-
ment and stress fields at each side of the interface are the same to the mode III of
separated homogeneous bodies. In this way

(σ13)j =− KIII√
2πr
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2

)
, (A.23)
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