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2 Centro de Investigaciones Ópticas, CC 3, 1897 Gonnet, La Plata, Argentina and Comisión de Investigaciones Cient́ıficas,

La Plata, Argentina
3 Instituto de F́ısica Arroyo Seco, Facultad de Ciencias Exactas, Universidad Nacional del Centro, Pinto 399, 7000 Tandil,

Argentina
4 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Received 28 November 2012 / Received in final form 26 February 2013
Published online (Inserted Later) – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2013

Abstract. The 4s4p configuration of Zn is analyzed using the Relativistic jj-coupling approach. The exper-
imentally determined relativistic Slater integrals are compared with the results of numerical codes, both
quasi- and fully-relativistic ones. In this work, they are estimated, semi-empirically, the two J = 1 levels
up Z = 70 and the 1P1 level up Z = 92 by judicious interpolation and extrapolation of energies. The com-
parison with extensive relativistic configuration-interaction calculations indicates that differences between
both approaches are of the order of measurement accuracies.

1 Introduction1

The 4s4p configuration of the Zn isoelectronic sequence2

is one of the most profusely studied atomic systems; in3

fact, it was analyzed from the experimental, as well as4

the theoretical and semi-empirical approaches. A complete5

bibliography can be found at the web site of the NIST [1].6

From the experimental point of view diverse spectro-7

scopic sources were used. Leaving aside the old works,8

referenced in the NIST web page, from 1980 to date,9

the most extensive ones are: Reader and Luther [2], us-10

ing laser produced plasmas (LPP), Acquista and Reader11

(LPP) [3], Isberg and Litzén [4] (hollow-cathode), Joshi12

and van Kleef [5] (triggered spark), Trigueiros et al. [6]13

(theta-pinch), Hinnov et al. [7] (tokamak), Litzén and14

Reader [8] (low-inductance vacuum spark), Churilov and15

Ryabtsev [9] (LPP), Sugar et al. [10] (tokamak), Ryabtsev16

et al. [11] (triggered three-electrode vacuum spark), Brown17

et al. [12] (LPP), Churilov and Joshi [13] (triggered spark18

and a sliding spark source), Träbert et al. [14,15] (EBIT).19

The general panorama is that the four levels of the nsnp20

configuration are known up to Z = 50 (Zc = 21); the21

two J = 1 levels are known (with holes) up to Z = 7022

(Zc = 41), whereas the 1P1 level is measured (with holes)23

up to Z = 92 (Zc = 63).24

From the theoretical point of view, this sequence was25

analyzed with the quasi-relativistic approach using the26

codes of Cowan [16] and Froese Fischer [17], as well as27

a e-mail: hdirocco@exa.unicen.edu.ar

fully-relativistic approaches using the HULLAC [12] and 28

the GRASP [18] codes. Several extensive calculations ap- 29

peared in diverse Journals and the complete list can be 30

found in reference [1]. 31

The semi-empirical method, widely developed and 32

used by Edlén, and presented in their famous article [19] 33

was continued with success by Curtis and condensed in 34

their book [20]. In particular, a study of the Zn sequence 35

was published by Curtis in 1985 (Ref. [21]). The experi- 36

mental material was limited to Z = 42 (Zc = 13) for the 37

four levels, and up to Z = 56 for the 1P1 level. In a number 38

of cases, some of the levels used by Curtis were corrected 39

in new analysis made after that year. 40

The general purpose of this work is to do a similar 41

study as the one made by Curtis but using the new exper- 42

imental material collected up to the present and using the 43

jj-coupling Relativistic Theory. The authors working with 44

the non-relativistic codes [16,17] present the comparison 45

between theoretical Slater and spin-orbit integrals with 46

the values deduced from the experiments. But this is not 47

so when using fully-relativistic codes [12,29,30]. Therefore, 48

one of our specific purposes is to make the comparison be- 49

tween the experimentally deduced Slater parameters and 50

those provided by the GRASP code generated by our- 51

selves. The second specific purpose is to use the capability 52

of the semi-empirical method for interpolation, extrapo- 53

lation and consistency checking. So, the establishment of 54

missing 1P1 and 3P1 levels (eleven in the range Z = 51–69) 55

will be presented. Also, from the new measurements of 56
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Träbert et al. [14,15] for Z = 70, 74, 76, 78, 79, 82, 83, 901

and 92, the level 1P1 is predicted, ultimately, for the en-2

tire isoelectronic sequence.3

2 Theory4

In the non-relativistic approach, the average energy of the5

nsnp configuration can be written in the form [22]:6

EAV = E (cs) + E (cs, ns) + E (cs, np)

+ F 0 (ns, np)− G1 (ns, np)
2 (2l + 1)

, (1)

where E (cs) is written for interactions of the pairs of elec-7

trons in closed shells, plus their I (nl) one-electron inte-8

grals, E (cs, nl) is the interaction of the nl electron with9

those in closed shells, F 0 (ns, np) and G1 (ns, np) are the10

Slater integrals. Furthermore, the singlet and triplet en-11

ergies are referred to EAV as 1P = G1 (ns, np) /2 and12
3P = −G1 (ns, np)/6. Similar expressions can be written13

for the relativistic case.14

The 4s4p configuration gives four levels that are de-15

signed, in the LS and jj schemes as:16

LS-coupled states jj-coupled states
nsnp 1P1 ←→ (

ns1/2np3/2

)
1

nsnp 3P2 ←→ (
ns1/2np3/2

)
2

nsnp 3P1 ←→ (
ns1/2np1/2

)
1

nsnp 3P0 ←→ (
ns1/2np1/2

)
0

(2)

resulting that, for low Z values, the levels are grouped in a17

singlet and a triplet, whereas for high Z they are grouped18

in two pairs: (ns1/2np3/2) and (ns1/2np1/2).19

Briefly, the Non-relativistic coupling schema in gen-20

eral, and their LS and jj approximations can be found21

in references [19,20]. In the case of our present interest,22

the four energy levels can be characterized by three pa-23

rameters: E0 (that contains F 0), G1(sp) and the spin-orbit24

integral ζp. Important consequences of the non-relativistic25

treatment are exactly26

E
(
3P2

)− E
(
3P0

)
= 3ζp/2 (3)

and27

1.5
[(

E
(
1P1

)
+ E

(
3P1

))− (
E

(
3P2

)
+ E

(
3P0

))]

= G1 (sp) ; (4)

departing from the election made by Curtis (see Ref. [21]).28

It is important to remark that, as there are two en-29

ergy parameters (G1 (sp) and ζp) in the non-relativistic30

treatment, the system is overdeterminated, and Dr.31

Curtis removed such overdeterminacy by using, only for32

parametrization purposes, two values for G1 (sp) : G1
A (sp)33

and G1
B (sp) arising from different level intervals. A similar34

analysis was applied to the Sm isoelectronic sequence [23].35

2.1 Relativistic jj coupling 36

The theory for the Relativistic jj coupling can be viewed 37

in detail in a previous paper written by one of us [24], 38

based in the book by Shore and Menzel [25], conve- 39

niently modified to introduce the relativistic Slater inte- 40

grals G1
(
ns1/2, np1/2

)
and G1

(
ns1/2, np3/2

)
in the place 41

of G1 (ns, np) . Other presentations can be found in the 42

book by de-Shalit and Talmi about the nuclear shell 43

model [26] or in an article by Larkins [27]. Lamentably, 44

in these last two cases, it is not taken into account the 45

interaction between the two J = 1 levels (called the break- 46

ing of the jj coupling by Shore and Menzel). A modern 47

presentation can be found in the books by Grant [18] and 48

Johnson [28]. The direct elements are 49

〈
abJM

∣∣r−1
12

∣∣ a′b′JM
〉

=
∑

k

(−1)J+jb−j′b+1+la+lb

× {[ja] [j′a] [jb] [j′b]}1/2

× S6j (J, jb, ja; k, j′a, j′b)

× S6j (1/2, ja, la; k, l′a, j
′
a)

× S6j (1/2, jb, lb; k, l′b, j
′
b)

×
〈
la

∥∥
∥C(k)

∥∥
∥ l′a

〉

×
〈
lb

∥
∥
∥C(k)

∥
∥
∥ l′b

〉
Rk (ab, a′b′)

(5)

with the abbreviated notation 50

[j1, j2, . . .] ≡ (2j1 + 1)(2j2 + 1) . . . 51

and with S6j we indicate the 6j symbol; C(k) indicates the 52

Racah spherical tensor. The exchange contribution leads 53

to the elements 54

〈
abJM

∣∣r−1
12

∣∣ b′a′JM
〉

=
∑

k

(−1)2J+2jb+ja−j′a+2

× {[ja] [j′a] [jb] [j′b]}1/2

× S6j (J, jb, ja; k, j′b, j
′
a)

× S6j (1/2, ja, la; k, l′b, j
′
b)

× S6j (1/2, jb, lb; k, l′a, j′a)

×
〈
la

∥∥
∥C(k)

∥∥
∥ l′b

〉

×
〈
lb

∥
∥
∥C(k)

∥
∥
∥ l′a

〉
Rk (ab, b′a′) .

(6)

The energy levels can be written, using both the jj nota- 55

tion and LS (for usefulness), as: 56

3P0 ≡ (1/2, 1/2)0 = E0 (sp−)−G1 (sp−) /3 (7)
3P2 ≡ (1/2, 3/2)2 = E0 (sp+)−G1 (sp+) /3 (8)

whereas 3P1 and 1P1 levels arise from the diagonalization 57

of the matrix 58
∥
∥
∥∥

A C
C B

∥
∥
∥∥≡

∥
∥
∥∥

E0(sp+)+G1 (sp+) /9
√

8R1 (sp−, sp+) /9√
8R1(sp−, sp+) /9 E0 (sp−)−G1 (sp−) /9

∥
∥
∥∥.

(9)
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From equation (9), the expressions for the eigenvalues are1

given by:2

3P1 =
{

1
2

[E0 (sp−) + E0 (sp+)]

+
1
18

[−G1 (sp−) + G1 (sp+)
]
}

− 1
18

{ [
G1 (sp−) + G1 (sp+) + 9E0 (sp+)

− 9E0 (sp−)] ˆ2 + 32
(
R1 (sp−, sp+)

)2
}1/2

(10)

and3

1P1 =
{

1
2

[E0 (sp−) + E0 (sp+)]

+
1
18

[−G1 (sp−) + G1 (sp+)
]
}

+
1
18

{ [
G1 (sp−) + G1 (sp+) + 9E0 (sp+)

− 9E0 (sp−)] ˆ2 + 32
(
R1 (sp−, sp+)

)2
}1/2

. (11)

Note that for prediction purposes valid for high Z values,4

the eigenvalues of equation (9) when C/ (A−B) � 1,5

simplify very approximately to (see Ref. [16], p. 290)6

1P1 ≈ A +
C2

A−B
− C4

(A− B)3
7

and8

3P1 ≈ B − C2

A−B
+

C4

(A−B)3
.9

Explicitly10

1P1 ≈
[
E0 (sp+) +

G1 (sp+)
9

]

+
8

(
R1

)2
/81

[E0 (sp+)−E0 (sp−)] + [G1 (sp+)+G1 (sp−)] /9
.

(12)

The expresion (12) will be used below to find the 1P111

values for Z > 72 (up to Z = 92).12

In this work we adopted E0 (sp−) and E0 (sp+) so that13

the level energies are measured with respect to the ground14

level 4s2 1S0 = 0, and not with respect to average energies.15

We chose this convention, as opposed to measure with16

respect to EAV (sp−) and EAV (sp+) because we know the17

four levels only up to Z = 50; therefore, it is not possible18

to use the EAV ’s for higher Z, but it is possible to use19

the E0’s. The property mentioned in equation (4) for the20

non-relativistic case is now21

22

1.5
[(

E
(
1P1

)
+ E

(
3P1

))− (
E

(
3P2

)
+ E

(
3P0

))]
23

=
G1 (sp−)

3
+

2G1 (sp+)
3

,24
25

such that 26

3G1 (sp) = G1 (sp−) + 2G1 (sp+) . (13)

Because the Slater integrals G1(sp) and R1(sp−, sp+), 27

multiplied by their respective factors, are much lower 28

that E0(sp−) and E0(sp+), it is confirmed that for high 29

Z values the energy levels tend to appear in pairs: 30

(1/2, 1/2)0,1 and (1/2, 3/2)1,2, as it is in the jj non- 31

relativistic case [19,20]. 32

It must be taken into account that we obtain effec- 33

tive relativistic Slater parameters in practice, because we 34

are not introducing neither Breit nor QED contributions 35

in our model. Such contributions to the excitation ener- 36

gies were calculated theoretically in references [29,30]. In 37

the work of Chen and Cheng [29], it is shown that self- 38

energy (SE) corrections are the most important contribu- 39

tions to QED effects. It is interesting to note that, concern- 40

ing to these QED corrections, we verified that the explicit 41

functional approximations developed by Curtis for self- 42

energy [31] produce good qualitative results (within 18% 43

for high Z) for E(4p1/2) − E(4p3/2) differences. Curtis 44

presented their SE parametrization written as: 45

Enlj (Z) =
2Rα3Z4

πn3
Fnlj (Z) (14)

in order to see the dominant Z and n dependences. 46

Fnlj(Z) is the reduced splitting factor and Curtis used 47

exact calculations and developed explicit formulae useful 48

in the semi-empirical study of isoelectronic sequences (see 49

Eq. (17) below). 50

Comparing with the Chen and Cheng QED corrections 51

for the Zn sequence, it is interesting to see that the sim- 52

ple screened-hydrogen model of Curtis is accurate enough, 53

even when devised primarily for alkali-like one-electron 54

spectra. For our estimations, we used effective charges Zeff 55

for the 4s, 4p1/2 and 4p3/2 orbitals. From the expecta- 56

tion values 〈r〉, 〈r2〉 and 〈1/r〉 provided by the GRASP 57

code we inferred Zeff values supposing screened hydro- 58

genic orbitals. Despite the roughness of the method, we 59

present our estimations, as well as the Chen and Cheng 60

values [29] at the end of Section 5, in order to show such 61

good agreement. 62

3 The correlation between the experimental 63

data and the theoretical parameters 64

As it was said above, the four levels of the 4s4p configura- 65

tion are known up to Z = 50 (Zc = 21); the two J = 1 lev- 66

els are known (with some holes) up to Z = 70 (Zc = 41), 67

whereas the 1P1 level was measured (with many holes) 68

up to Z = 92 (Zc = 63). Levels 3P0,2 do not decay to 69

the fundamental 4s2 1S0, and there are unknown combi- 70

nations with upper configurations (e.g. 4s4d or 4p2) for 71

Z > 50; therefore, there are not experimental 3P0,2 values 72

for Z > 50. 73

In general, the measurements for high Z values, pro- 74

vided by the different authors and different spectroscopic 75
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sources, are discordant. Assuming, as an average, uncer-1

tainties in the wavelength measurements of the order of2

Δλ ∼ 0.01 Å, it signifies that for Z ∼ 50, where λ ∼ 200 Å,3

we will have Δσ ∼ 25 cm−1, whereas that, for Z = 92,4

where λ ∼ 26 Å, it implies Δσ ∼ 1500 cm−1. However,5

for Z = 92, the discrepance between the measurements6

given by different authors is about 5000 cm−1 (compare7

Refs. [12,14]).8

It is very important to remark, for comparison pur-9

poses, that the laser-plasma results appear to drift to10

higher and higher energies as Z increases. The same11

trend is found in the 4s–4p transition energies in Cu-like12

ions where laser-plasma results are systematically higher13

than high-precision EBIT measurements and RCI calcula-14

tions [29]. Therefore, we do not use the results from Brown15

et al. [12] for Z ≥ 70 but the measurements from Träbert16

et al. [14,15].17

3.1 Range Z = 30–5018

When all levels of the configuration nsnp are known,19

the theoretical parameters can be obtained without the20

use of numerical codes, if we take into account several21

properties of the relativistic treatment, because there are22

more parameters than in the non-relativistic case (see23

Ref. [20]). Indeed, in the place of E0, we have now24

E0(sp−) and E0(sp+) and in the place of G1(sp) we have25

G1(sp−) and G1(sp+); furthermore, the interaction pa-26

rameter R1(sp−, sp+) appears, but ξp does not appear.27

Because there are four levels and five parameters, we need28

one link equation. To this purpose, we use the relation29

(not the absolute numbers!) G1(sp−)/G1(sp+) = 1.01230

provided by the GRASP code, a practically constant value31

in the complete sequence, from Zn0+ up to U62+.32

Therefore, in the range Z = 30–50, the values of33

E0(sp−), E0(sp+), G1(sp−), G1(sp+) and R1(sp−, sp+)34

are deduced from the experimental level values following35

these steps:36

1) we calculate the non-relativistic value G1(sp) from37

equation (4),38

2) using equation (13) and G1(sp−) = 1.012 G1(sp+)39

from the GRASP code, we calculate G1(sp−) and40

G1(sp+) as G1(sp−) = 1.008 G1(sp) and G1(sp+) =41

0.996 G1(sp),42

3) E0(sp−) and E0(sp+) are calculated from equa-43

tions (7) and (8), respectively,44

4) finally, R1(sp−, sp+) is calculated by diagonaliz-45

ing equation (9) or by using any of the equa-46

tions (10) or (11). In practice, R1(sp−, sp+) ∼= G1(sp)47

within 0.5%, as it must be expected from the relativis-48

tic (Z = 1) values, calculated as in reference [22].49

After the calculations for Z = 30–50, we can fit the be-50

havior of the relativistic Slater integrals G1(sp−), G1(sp+)51

and R1(sp−, sp+) with Zc through the functional relations52

as follows: 53

G1 (sp−)
∣
∣
EXPE

= 5641.77Zc + 33131.00

− 21929.65 exp(−Zc/2.62288)
− 20891.54 exp(−Zc/0.47458)

G1 (sp+)
∣
∣
EXPE

= 5574.60Zc + 33736.53

− 21668.60 exp(−Zc/2.62288)
− 20642.83 exp(−Zc/0.47458)

R1 (sp−, sp+)
∣∣
EXPE

= 5526.30Zc + 34573.90

− 16485.56 exp−Zc/3.839
− 16589 exp(−Zc/1.02574) (15)

essential for extrapolations for Z ≥ 51; the goodness of 54

these fits is shown in Table 1. On the other hand, the 55

behavior of E0(sp−) and E0(sp+) has more complicated 56

patterns. However, the difference E0sp+) − E0(sp−) can 57

be very well fitted and permits a judicious extrapolation 58

for Z ≥ 51. 59

All the adjustments given by equation (15) have the 60

following remarkable property: the A′s coefficients are all 61

very similar between them and similar to the hydrogenic 62

values G1
H(sp−), G1

H(sp+) and R1
H(sp−, sp+), all of them 63

of the order of the non-relativistic value: 5368.7 cm−1 [22]. 64

Therefore, we have adopted the expressions (15) also for 65

Z > 50. This type of fits was widely used by Edlén [19], 66

as well as Curtis [20] in the analysis of isoelectronic 67

sequences. 68

3.2 Range Z = 51–70 69

In this range, they are reported only the two levels with 70

J = 1 : 1P1 and 3P1, that decay to the fundamental 1S0. 71

Missing values for 1P1 occur for Z = 61, 65 and 69, 72

whereas missing values for 3P1 occur for Z = 56, 58, 59, 73

61, 62, 65, 67 and 69. Then, we follow these approaches: 74

1) For those values of Z when there are experimental val- 75

ues for both J = 1 levels, we constructed the matrix 76

with J = 1 (Eq. (9)) with the values for G1
H(sp−), 77

G1
H(sp+) and R1

H(sp−, sp+) given by equation (15). 78

The values for E0(sp−) and E0(sp+) are found by di- 79

agonalizing that matrix. 80

As an example, for Z = 60, where 81

E(3P1) = 496 857 cm−1, E(1P1) = 829 208 cm−1, 82

and equations (15) gives 83

G1(sp−) = 208 004 cm−1, G1(sp+) = 205 548 cm−1
84

and 85

R1(sp−, sp+) = 205 884 cm−1, 86

the solution of the system constituted by equa- 87

tions (11) and (10) gives us the values 88

E0(sp−) = 533 082 cm−1 and E0(sp+) = 793 255 cm−1. 89
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Table 1. Compilation of the four levels of the 4s4p configuration of the Zn sequence, Z = 30–50, in cm−1. Because all parameters
G1(sp−), G1(sp+), E0(sp−), E0(sp+) and R1(sp−, sp+) can be recovered anallytically from the known experimental levels, it
is not necessary to present them. The J = 1 levels were re-calculated with the use of the fitted G1(sp−) and G1(sp+) integrals,
in order to show the goodness of that adjustments. The standard deviation is of the order of ±28 cm−1.

Z 1P1 (exp.) 1P1 (calc.) 3P0 (exp.) 3P1 (exp.) 3P1 (calc.) 3P2 (exp.) References
30 46 745 46 761 32 311 32 501 32 497 32 890 [1]
31 70 700 70 651 47 370 47 816 47 872 48 750 [1]
32 91 873 91 817 61 733 62 496 62 513 64 138 [1]
33 112 022 111 994 75 812 76 962 76 987 79 492 [1]
34 131 733 131 736 89 749 91 350 91 392 94 960 [5]
35 151 289 151 293 103 593 105 712 105 750 110 624 [5]
36 170 835 170 843 117 389 120 094 120 123 126 553 [6]
37 190 502 190 500 131 157 134 523 134 533 142 802 [8]
38 210 378 210 365 144 933 149 029 149 014 159 433 [8]
39 230 529 230 502 158 709 163 607 163 584 176 474 [8]
40 251 031 251 009 172 535 178 305 178 271 194 009 [8]
41 271 939 271 898 186 363 193 077 193 034 212 033 [8]
42 293 333 293 281 200 311 207 982 207 935 230 642 [8]
44 337 727 337 688 228 244 238 118 238 124 269 736 [9]
45 360 810 360 778 242 262 253 346 253 390 290 277 [9]
46 384 718 384 649 256 490 268 745 268 809 311 648 [9]
47 409 312 409 274 270 621 284 251 284 258 333 853 [9]
48 434 699 434 660 284 831 299 825 299 819 356 855 [9]
49 460 878 460 896 299 171 315 530 315 539 380 737 [9]
50 488 338 488 288 313 704 331 470 331 500 405 823 [9]

2) For Z = 56, 58, 59, 61, 62, 65, 67 and 69, we use the val-1

ues of equation (15) and the E0(sp−) and E0(sp+) val-2

ues of the neighboring Z ′s in order to find the missing3

parameters by interpolation.4

Therefore, with the calculated values of G1
H(sp−),5

G1
H(sp+), R1

H(sp−, sp+), E0(sp−) and E0(sp+), the ener-6

gies for the missing J = 1 levels, as well as the levels 3P07

and 3P2 follow from previous equations, and can be com-8

pared with theoretical estimations of references [29,30].9

In order to compare our results (experimental10

and/or interpolated) with theoretical calculations of ref-11

erences [29,30], the summary is:12

a) 1P1 levels: 17 values are experimental and 3 values13

were interpolated. The mean and standard deviation14

are15

Δ[(1P1,exp)− (1P1,Chen)] = (34± 115) cm−1;16

Δ[(1P1,exp)− (1P1,Hu)] = (−675± 161) cm−1.1718

b) 3P1 levels: 12 values are experimental and 8 values19

were interpolated. The numbers are20

Δ[(3P1,exp)− (3P1,Chen)] = (−281± 169) cm−1;21

Δ[(3P1,exp)− (3P1,Hu)] = (113± 195) cm−1.2223

c) 3P0 levels: all of them were calculated after the esti-24

mation of G1(sp−), G1(sp+), R1(sp−, sp+), E0(sp−)25

and E0(sp+) as explained above. Now,26

Δ[(3P0,exp)− (3P0,Chen)] = (−311± 198) cm−1;27

Δ[(3P1,exp)− (3P1,Hu)] = (372± 242) cm−1.2829

d) 3P2 levels: the same situation as above. Now, 30

Δ[(3P2,exp)− (3P2,Chen)] = (373± 459) cm−1; 31

Δ[(3P2,exp)− (3P2,Hu)] = (986± 300) cm−1. 3233

Taking into account all levels, 34

Δ[our−−Ref. [29]] = (−46± 381) cm−1
35

and 36

Δ[our−−Ref. [30]] = (210± 662) cm−1. 37

This indicates that our values (experimental, interpolated 38

and calculated) are in better agreement with reference [29] 39

than with reference [30]. On the other hand, the compar- 40

ison between the theoretical calculations indicates that Δ 41

[Ref. [29]–Ref. [30]] = (228± 558) cm−1. 42

3.3 Range Z = 70–92 43

In this range only the 1P1 level for some elements is re- 44

ported, with several measurements due to different au- 45

thors and different spectroscopic sources; in some cases, 46

the values are discordating. As it was said above, we 47

take the high-precision results from references [14,15] and 48

not the laser-plasma measurements. In this range, it is 49

not possible to derive values for E0 (sp−) and E0 (sp+) 50

as in the previous subsection, due to the lack of the 51

experimental 3P1 levels. We take, as the experimen- 52

tal data base, the latest works of Träbert et al. for 53

Z = 70, 74, 76, 78, 79, 82, 83, 90 and 92 using the EBIT 54
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source. We take into account that, in equation (12) the1

denominator2

[E0 (sp+)− E0 (sp−)] +
[
G1 (sp+) + G1 (sp−)

]
/93

can be fitted in the range Z = 30–70 by the polynomial4

Denominator (Zc)=− 96.8844+449.7958Zc+104.0723Zc2
5

+ 1.5816Zc3 + 0.1048Zc4
67

with a correlation coefficient R2 = 1. Then, for Z = 70,8

74, 76, 78, 79, 82, 83, 90 and 92, we calculate E0(sp+)9

from10

E0 (sp+) = E
(
1P1

)− G1 (sp+)
9

− 8
[
R1 (sp−, sp+)

]2
/81

Denominator (Zc)
(16)

with G1 (sp+) and R1 (sp−, sp+) calculated from equa-11

tion (15). After this, we interpolate for the other Zs in12

the range Z = 70–92. The results are shown in Table 3.13

4 Comparison with theoretical values14

Whereas the authors working with the non-relativistic15

codes, as the ones by Cowan [16] or Frose-Fischer [17] com-16

pare the theoretical Slater and spin-orbit integrals with17

the values deduced from the experiments, this is not so18

when using the fully-relativistic codes as the GRASP and19

HULLAC ones. We intend to make that comparison, using20

values of the GRASP code generated by ourselves.21

Before commenting about the comparison between the22

theoretical and experimental values, we have noted the23

following interesting correlation between the theoretical24

values obtained by two independent codes: the one by25

Cowan [16] and the other one by Grant [18]: with high26

accuracy the relation27

G1 (sp)
∣
∣
COWAN

≈ 1
3

G1 (sp−)
∣
∣
GRASP

28

+
2
3

G1 (sp+)
∣
∣
GRASP

;29
30

is satisfied, practically the same theoretical relation given31

by equation (13).32

Because it is known that, when using the Cowan codes,33

the relation between experimental and theoretical values34

for the Slater parameters is about 0.8–0.85 for high Z35

values [16], it is deduced that36

G1 (sp±)
∣
∣
exp

/ G1 (sp±)
∣
∣
GRASP

≈ 0.8−0.8537

(or worse for lower Z values). Something similar occurs38

for the relation R1 (sp−, sp+) |exp/R1 (sp−, sp+) |GRASP .39

5 Results and discussion40

Summarizing, up to Z = 50 (Zc = 21), where the four41

experimental level values are known, we calculate the42

Fig. 1. The four levels of the 4s4p configuration of the Zn
isoelectronic sequence for Z = 30–70 (see the text to dis-
tinguish between experimental from the interpolated values).
Note the strong departure from the linearity of levels 1P1 and
3P2 for Z � 50.

five parameters: E0(sp−), E0(sp+), G1(sp−), G1(sp+) and 43

R1(sp−, sp+) by fixing the relation 44

G1(sp−)/G1(sp+) = 1.012. 45

These values can be compared with theoretical ones, tend- 46

ing to approximately 0.80–0.85, as was said above. This 47

range of Z is of great importance because the behavior 48

of G1(sp−), G1 (sp+) and R1(sp−, sp+) for all Z can be 49

inferred, given by equations (15) (tending to be linear for 50

high Zc). In Table 1, we compile the four levels updating 51

the Table 1 from reference [20]. Because all parameters 52

G1(sp−), G1(sp+), E0(sp−), E0(sp+) and R1(sp−, sp+) 53

can be recovered anallytically from the known experimen- 54

tal levels, it is not necessary to present them explicitly 55

(see Sect. 3.1). 56

In the range Z = 51–70, missing 1P1 level occurs for 57

Z = 61, 65 and 69 whereas missing 3P1 level occurs for 58

Z = 56, 58, 59, 61, 62, 65, 67 and 69. For Z = 51–55, 59

57, 60, 63, 64, 66 and 68, where the two J = 1 lev- 60

els are known, we calculated E0(sp−) and E0(sp+) by 61

diagonalizing the matrix 9, with G1(sp−), G1(sp+) and 62

R1(sp−, sp+) given by equations (15). Therefore, using ju- 63

dicious interpolation, we estimated E0(sp−) and E0(sp+) 64

for all range of Z. Then, we proposed also the approximate 65

values for J = 0, 2; all levels are presented in Table 2a. 66

The four levels, for Z = 30 − 70, are shown in Figure 1. 67

For Z = 51− 69, the comparison with the large scale cal- 68

culations from Chen and Cheng [29] and Hu et al. [30] 69

are shown in Figures 2a and 2b. Our interpolated values 70

are close, in general, to the calculated values from Chen 71

and Cheng rather than the results from Hu et al. [30] 72

In general, the greater discrepance is for the 3P2 levels. 73

On the other hand, it is interesting to note the bad cal- 74

culation of these authors for 3P1(Z = 70): whereas the 75

measurement of Hinnov et al gives 674 832 cm−1, Chen 76

and Cheng gives 676 338 cm−1. In Table 2b, we present 77

the interpolated J = 1 levels of Table 2a, compared with 78
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Table 2a. The four levels of the 4s4p configuration of the Zn sequence, Z = 51–72, in cm−1. The J = 1 levels are in general
experimental, although in several cases we interpolate, as it is explained in the text. The levels 3P0 and 3P2 are calculated as
explained in the text. The uncertainties in the experimental levels correspond to uncertainties in the wavelength measurements
of Δλ ∼ 0.01 Å for the transitions to the ground level 4s2 1S0 (see, for example, Ref. [12] although lesser uncertainties are
reported in Ref. [14]).

Z 1P1 (exp. or int.) 3P0 (calc.) 3P1 (exp. or int.) 3P2 (calc.) References
51 516 569 ± 27 328 166 347 425 ± 12 431 833 [3]
52 545 962 ± 30 342 782 363 524 ± 13 458 978 [3]
53 576 442 ± 33 357 505 379 744 ± 14 487 223 [12]
54 608 228 ± 37 372 319 396 082 ± 16 516 802 [12]
55 641 276 ± 41 387 260 412 558 ± 17 547 652 [12]
56 675 804 ± 46 402 290 429 141 580 002 [12]; 3P1 interpolated
57 711 814 ± 51 417 417 445 831 ± 20 613 845 [7]
58 749 333 ± 56 432 731 462 710 649 196 [12]; 3P1 interpolated
59 788 389 ± 62 448 187 479 728 686 084 [3]; 3P1 interpolated
60 829 208 ± 69 463 748 496 857 ± 25 724 739 [12]
61 871 896 479 565 514 242 765 264 1P1 and 3P1 interpolated
62 916 506 ± 84 495 289 531 542 807 718 [12]; 3P1 interpolated
63 963 094 ± 93 511 019 548 847 ± 30 852 150 [12]
64 1 011 828 ± 102 526 850 566 251 ± 32 898 727 [12]
65 1 062 720 543 122 584 415 947 447 1P1 and 3P1 interpolated
66 1 116 071 ± 125 560 072 602 580 ± 36 998 615 [10]
67 1 172 182 ± 137 576 817 620 883 1 052 550 [12]; 3P1 interpolated
68 1 229 967 ± 151 593 425 639 031 ± 41 1 108 145 [12]
69 1 290 868 609 850 657 004 1 166 864 1P1 and 3P1 interpolated
70 1 354 885 ± 184 626 126 674 832 ± 68 1 228 701 [14],[7]

Table 2b. The interpolated J = 1 levels of the previous table, compared with the theoretical calculations of reference [29].
Note that there is a noticeable discrepance only for the 3P1 case for Z = 69 (see the Text).

Z 1P1
1P1 (Ref. [29]) Δσ (int. – Ref. [29]) 3P1

3P1 (Ref. [29]) Δσ (int. – Ref. [29])
56 429 141 429 406 −249
58 462 710 462 990 74
59 479 728 479 976 104
61 871 896 871 877 11 514 242 514 343 −197
62 531 542 531 732 −252
65 1 062 720 1 062 706 14 584 415 584 771 −356
67 620 883 620 880 3
69 1 290 868 1 291 039 −171 657 004 657 691 −687

the theoretical calculations of reference [29]. Note that1

there is a noticeable discrepance for the 3P1 case only2

for Z = 64 and 69 (but, see the previous sentence about3

the calculations for Z = 70). With respect to the 1P14

levels, the comparison between the theoretical calcula-5

tions [29,30] and the predicted measurements [12], would6

indicate that for Z = 67 that measurement is possibly7

wrong.8

In the range Z = 70–92, where only the 1P1 levels for9

Z = 70, 74, 76, 78, 79, 82, 83, 90 and 92 were measured,10

we calculated E0(sp+) from equation (16) and interpo-11

lated for the other values of Z. Missing 1P1 values were12

calculated using equation (12). The values for E0(sp+)13

and E(1P1) are shown in Table 3, where they are com-14

pared with the calculation by Chen and Cheng [29]. Note15

that the greater discrepance, Δσ = 859 cm−1 for Z = 87,16

is equivalent to Δλ � 0.009 Å (the order of the measure-17

ment accuracy). The analysis of the experimental, as well18

as our interpolations and Chen and Cheng calculations19

indicates that 20

Δ
[(

3P2,exp

)− (
3P2,ours

)]
= (57± 238) cm−1

21

whereas 22

Δ
[(

3P2,exp

)− (
3P2,Chen

)]
= (99± 254) cm−1. 23

These results indicate that the interpolation procedure 24

give values of comparable accuracy as the large-scale 25

calculations. 26

Concerning to the self-energy approximate estimates, 27

the equation (14) is, explicitly 28
[
E

(
4p1/2

)− E
(
4p3/2

)]
SE

= 10.884× 10−3Z4
eff

+ 2.88× 10−10Z7
eff

− 3.124× 10−12Z8
eff ; (17)

with Zeff values inferred from the expectation values for 29

〈r〉, 〈r2〉 and 〈1/r〉 given by the GRASP code. The values 30

given by equation (17) are shown, jointly with the Chen 31

and Cheng calculations in Figure 3. 32
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(a)

(b)

Fig. 2. (a) Difference between our established levels 1P1 and
the values of the large-scale relativistic calculations from Chen
and Cheng [29] and Hu et al. [30] for Z = 51–69 (Zc = 22–40).
(b) Difference between our established levels 3P1 and the val-
ues of the large-scale relativistic calculations from Chen and
Cheng [29] and Hu et al. [30] for Z = 51–69 (Zc = 22–40).

6 Conclusions1

The specific purposes of this work were: 1) to compare2

the experimentally deduced Slater parameters and those3

provided by the GRASP code, 2) to use the capability of4

the semi-empirical method for interpolation, extrapolation5

and consistency checking.6

Concerning item 1, we parametrized completely the7

4s4p levels belonging to the Zn isoelectronic sequence8

up to Z = 50, by using the Relativistic jj-coupling ap-9

proach, and the experimentally derived parameters were10

compared with those obtained with the GRASP code. In11

this range, it was verified that the relation between the ex-12

perimental values of G1(sp−), G1(sp+) and R1(sp−, sp+)13

Fig. 3. Self-energy estimations from the Curtis expression
(only SE ) as compared with all QED calculations from
reference [29].

and their theoretical counterparts followed the empirical 14

laws given by: 15

16

G1 (sp±)
∣
∣
exp

/ G1 (sp±)
∣
∣
GRASP

17

≈ R1 (sp−, sp+)
∣
∣
exp

/ R1 (sp−, sp+)
∣
∣
GRASP

≈ 0.8− 0.85. 18
19

For the item 2, we estimated by interpolation, in the range 20

Z = 51–70, the 1P1 level for Z = 61, 65 and 69 and the 3P1 21

level for Z = 56, 58, 59, 61, 62, 65, 67, 69 and 71 establish- 22

ing, therefore, the J = 1 level values for this interval of Z. 23

Also, approximate values for levels with J = 0, 2, where 24

experimental values were not available, were presented. 25

The entire range Z = 30–70 allowed to fit the val- 26

ues of [E0 (sp+)− E0 (sp−)] +
[
G1 (sp+) + G1 (sp−)

]
/9 27

with a very high correlation coefficient. This fact was es- 28

sential to find very approximate values of E0 (sp+) for 29

Z = 72–92 implying that 1P1 could be estimated in defini- 30

tive, for Z = 30–92. 31

From the comparison between experimental and theo- 32

retical values it results that both codes, the one by Cowan, 33

using the quasi-relativistic approach and the other one by 34

Grant, using the fully-relativistic point of view, are of sim- 35

ilar quality for interpretating this isoelectronic sequence. 36

The comparison between our experimentally derived (or 37

interpolated) values and the large-scale relativistic calcu- 38

lations by Chen and Cheng [29] and Hu et al. [30] in- 39

dicates that the comparison is good, in general, for the 40

levels with J = 1, except for Z = 69. In short, our work 41

indicates that the semi-empirical treatment of the Zn iso- 42

electronic sequence using the jj-relativistic approach gives 43

values for the missing levels of equivalent quality as the 44

large-scale relativistic configuration-interaction approach 45

of Chen and Cheng [29] and Hu et al. [30]. 46

It is important to remark that for the range Z = 51–70, 47

and for 80 values (4 levels times 20 ions), 48

Δ [our–Ref. [29]] = (−46± 381) cm−1
49
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Table 3. The 1P1 levels in the range Z = 70–92: they are (i) the experimental, (ii) the calculated as explained in the text and
(iii) the theoretical from reference [29]. Also, the E0 (sp+) values are shown. Note that the greatest discrepance, Δσ = 859 cm−1

for Z = 87 is equivalent to Δλ � 0.009 Å (the order of the measurement accuracy).

Z 1P1 (exp) E0 (sp+) 1P1 (calc) 1P1 (Ref. [29]) Δσ (calc – Ref. [29])

70 1 354 885 1 314 596 1 354 885 1 354 923 –23

73 1 523 824 1 564 695 1 564 716 –21

74 1 641 228 1 600 029 1 641 159 1 641 258 –99

75 1 679 990 1 721 518 1 721 349 169

76 1 805 576 1 763 637 1 805 264 1 805 150 114

77 1 850 840 1 892 956 1 892 903 53

78 1 984 521 1 941 807 1 984 789 1 984 689 100

79 2 080 806 2 037 693 2 080 952 2 080 749 203

80 2 138 117 2 181 637 2 181 165 472

81 2 243 099 2 287 035 2 286 421 614

82 2 397 018 2 352 661 2 396 890 2 396 435 455

83 2 511 610 2 466 824 2 511 621 2 511 611 10

84 2 586 430 2 631 650 2 632 110 –460

85 2 711 734 2 757 397 2 758 094 –697

86 2 842 993 2 889 104 2 889 885 –781

87 2 980 461 3 027 027 3 027 886 –859

88 3 124 395 3 171 421 3 172 259 –838

89 3 275 050 3 322 543 3 323 327 –784

90 3 480 646 3 432 682 3 480 732 3 480 766 –34

91 3 597 546 3 645 987 3 646 594 –607

92 3 818 820 3 769 898 3 818 309 3 818 632 –323

and1

Δ [our–Ref. [30]] = (210± 662) cm−1.2

On the other hand, the comparison between the theoreti-3

cal calculations indicates that4

Δ [Ref. [29]–Ref. [30]] = (228± 558) cm−1.5

These values indicate that our approach produced values6

of comparable quality as the theoretical ones.7

With respect to the non-relativistic treatment given8

by reference [20], it is important to note: (i) the use9

of the spin-orbit integral ζnp in that formulation and10

(ii) the empirical linearity of the screening parameters11

Si (SG and Sζ) in terms of 1/ (Z − Si) in the range12

Z = 30–50. As we can see in equation (3), the calcula-13

tion of ζnp needs the energies of the 3P2 and 3P0 levels,14

but these levels are unknown for Z > 50. Therefore, the15

method of reference [20] is not possible for Z > 50. More-16

over, as can be inferred from our Table 2a, the behav-17

ior of the screening parameters Si in terms of 1/ (Z − Si)18

are strongly non-linear in the range Z = 51–70. Therefore,19

summing all, the extrapolations from the range Z = 30–5020

to Z > 50 are, in our opinion, not possible using the non-21

relativistic approach. These facts were the trigger for our22

present work.23
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