Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid

Alcón, Liliana GracielaIcon ; Bonomo, FlaviaIcon ; Duran, Guillermo AlfredoIcon ; Gutierrez, MarisaIcon ; Mazzoleni, María PíaIcon ; Ries, Bernard; Valencia Pavón, Mario
Fecha de publicación: 01/2018
Editorial: Elsevier Science
Revista: Discrete Applied Mathematics
ISSN: 0166-218X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Matemáticas

Resumen

Golumbic, Lipshteyn and Stern [12] proved that every graph can be represented as the edge intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer k, Bk-EPG graphs are defined as EPG graphs admitting a model in which each path has at most k bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is a B4-EPG graph, by embedding the circle into a rectangle of the grid. In this paper, we prove that circular-arc graphs are B3-EPG, and that there exist circular-arc graphs which are not B2-EPG. If we restrict ourselves to rectangular representations (i.e., the union of the paths used in the model is contained in the boundary of a rectangle of the grid), we obtain EPR (edge intersection of paths in a rectangle) representations. We may define Bk-EPR graphs, k≥0, the same way as Bk-EPG graphs. Circular-arc graphs are clearly B4-EPR graphs and we will show that there exist circular-arc graphs that are not B3-EPR graphs. We also show that normal circular-arc graphs are B2-EPR graphs and that there exist normal circular-arc graphs that are not B1-EPR graphs. Finally, we characterize B1-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they form a subclass of normal Helly circular-arc graphs.
Palabras clave: (Normal, Helly) Circular-Arc Graphs , Edge Intersection Graphs , Forbidden Induced Subgraphs , Paths on A Grid , Powers of Cycles
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 563.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/83118
URL: https://www.sciencedirect.com/science/article/pii/S0166218X16303687
DOI: http://dx.doi.org/10.1016/j.dam.2016.08.004
URL: https://arxiv.org/abs/1506.08750
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Alcón, Liliana Graciela; Bonomo, Flavia; Duran, Guillermo Alfredo; Gutierrez, Marisa; Mazzoleni, María Pía; et al.; On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid; Elsevier Science; Discrete Applied Mathematics; 234; 1-2018; 12-21
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES