Mostrar el registro sencillo del ítem

dc.contributor.author
Novitskaya, E.  
dc.contributor.author
Ruestes, Carlos Javier  
dc.contributor.author
Porter, M. M.  
dc.contributor.author
Lubarda, V. A.  
dc.contributor.author
Meyers, Marc A.  
dc.contributor.author
McKittrick, J.  
dc.date.available
2018-01-03T21:24:42Z  
dc.date.issued
2017-07  
dc.identifier.citation
McKittrick, J.; Meyers, Marc A.; Lubarda, V. A.; Porter, M. M.; Ruestes, Carlos Javier; Novitskaya, E.; et al.; Reinforcements in avian wing bones: Experiments, analysis, and modeling; Elsevier; Journal Of The Mechanical Behavior Of Biomedical Materials; 76; 7-2017; 85-96  
dc.identifier.issn
1751-6161  
dc.identifier.uri
http://hdl.handle.net/11336/32240  
dc.description.abstract
Almost all species of modern birds are capable of flight; the mechanical competency of their wings and the rigidity of their skeletal system evolved to enable this outstanding feat. One of the most interesting examples of structural adaptation in birds is the internal structure of their wing bones. In flying birds, bones need to be sufficiently strong and stiff to withstand forces during takeoff, flight, and landing, with a minimum of weight. The cross-sectional morphology and presence of reinforcing structures (struts and ridges) found within bird wing bones vary from species to species, depending on how the wings are utilized. It is shown that both morphology and internal features increases the resistance to flexure and torsion with a minimum weight penalty. Prototypes of reinforcing struts fabricated by 3D printing were tested in diametral compression and torsion to validate the concept. In compression, the ovalization decreased through the insertion of struts, while they had no effect on torsional resistance. An elastic model of a circular ring reinforced by horizontal and vertical struts is developed to explain the compressive stiffening response of the ring caused by differently oriented struts.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
3d Printing  
dc.subject
Mechanical Properties  
dc.subject
Micro-Computed Tomography  
dc.subject
Strut  
dc.subject
Vulture Bone  
dc.title
Reinforcements in avian wing bones: Experiments, analysis, and modeling  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-19T18:37:54Z  
dc.journal.volume
76  
dc.journal.pagination
85-96  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Ámsterdam  
dc.description.fil
Fil: Novitskaya, E.. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Ruestes, Carlos Javier. University of California at San Diego; Estados Unidos. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Porter, M. M.. University of California at San Diego; Estados Unidos. Clemson University. Department of Mechanical Engineering; Estados Unidos  
dc.description.fil
Fil: Lubarda, V. A.. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: McKittrick, J.. University of California at San Diego; Estados Unidos  
dc.journal.title
Journal Of The Mechanical Behavior Of Biomedical Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmbbm.2017.07.020  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1751616117303065