Mostrar el registro sencillo del ítem

dc.contributor.author
Tebele, María Florencia  
dc.contributor.author
Paris, Gastón  
dc.contributor.author
Zelcer, Andrés  
dc.date.available
2024-02-28T12:01:06Z  
dc.date.issued
2023-12  
dc.identifier.citation
Tebele, María Florencia; Paris, Gastón; Zelcer, Andrés; Plasmonic inhibition of bacterial adhesion on gold-decorated mesoporous zirconium oxide thin films; Elsevier Science; Colloids and Surfaces B: Biointerfaces; 232; 12-2023; 1-10  
dc.identifier.issn
0927-7765  
dc.identifier.uri
http://hdl.handle.net/11336/228723  
dc.description.abstract
Preventing bacterial development on surfaces is essential to avoid problems caused by biofouling. Surfaces decorated with gold nanoparticles have been shown to thermally kill bacteria under high-intensity NIR illumination. In this study, we evaluated the colonization by E. coli of nanostructured surfaces composed of mesoporous zirconia thin films, both with and without gold nanoparticles embedded into the pores. We studied the effect of the nanostructure and of low intensity visible light excitation of the gold nanoparticles on the colonization process. We found that neither the zirconia, nor the presence of pores, or even gold nanoparticles affect bacterial adhesion compared to the bare glass substrate. Therefore, mesoporous zirconia thin films are biologically inert scaffolds that enable the construction of robust surfaces containing functional nanoparticles that can affect bacterial growth. When the gold containing surfaces are irradiated with light, bacterial adhesion shows a remarkable 96 ± 4% reduction. Our studies revealed that these surfaces affect early colonization steps, prior to biofilm formation, preventing bacterial adhesion without affecting its viability. In contrast to related systems where plasmonic excitation induces membrane damage due to strong local heating, the membrane integrity is preserved, showing that these surfaces have a different working principle.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ANTIBACTERIAL SURFACES  
dc.subject
GOLD NANOPARTICLES  
dc.subject
MESOPOROUS THIN FILMS  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Plasmonic inhibition of bacterial adhesion on gold-decorated mesoporous zirconium oxide thin films  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-28T09:49:58Z  
dc.journal.volume
232  
dc.journal.pagination
1-10  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Tebele, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina  
dc.description.fil
Fil: Paris, Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina  
dc.description.fil
Fil: Zelcer, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina  
dc.journal.title
Colloids and Surfaces B: Biointerfaces  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1016/j.colsurfb.2023.113576  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.colsurfb.2023.113576