Mostrar el registro sencillo del ítem

dc.contributor.author
Lu, C. H.  
dc.contributor.author
Hahn, E. N.  
dc.contributor.author
Remington, B. A.  
dc.contributor.author
Maddox, B. R.  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.contributor.author
Meyers, Marc A.  
dc.date.available
2022-12-06T11:22:24Z  
dc.date.issued
2015-10  
dc.identifier.citation
Lu, C. H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, Eduardo Marcial; et al.; Phase Transformation in Tantalum under Extreme Laser Deformation; Nature Publishing Group; Scientific Reports; 5; 10-2015; 1-8  
dc.identifier.issn
2045-2322  
dc.identifier.uri
http://hdl.handle.net/11336/180295  
dc.description.abstract
The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature Publishing Group  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
TANTALUM  
dc.subject
PHASE TRANSFORMATION  
dc.subject
HIGH PRESSURE  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Phase Transformation in Tantalum under Extreme Laser Deformation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-12-05T15:08:30Z  
dc.journal.volume
5  
dc.journal.pagination
1-8  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Lu, C. H.. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Remington, B. A.. Lawrence Livermore National Laboratory; Estados Unidos  
dc.description.fil
Fil: Maddox, B. R.. Lawrence Livermore National Laboratory; Estados Unidos  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos  
dc.journal.title
Scientific Reports  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/srep15064