Mostrar el registro sencillo del ítem

dc.contributor.author
Yang, Wen  
dc.contributor.author
Ruestes, Carlos Javier  
dc.contributor.author
Li, Zezhou  
dc.contributor.author
Abad, Oscar Torrents  
dc.contributor.author
Langdon, Terence G.  
dc.contributor.author
Heiland, Birgit  
dc.contributor.author
Koch, Marcus  
dc.contributor.author
Arzt, Eduard  
dc.contributor.author
Meyers, Marc A.  
dc.date.available
2022-10-18T12:48:13Z  
dc.date.issued
2021-05  
dc.identifier.citation
Yang, Wen; Ruestes, Carlos Javier; Li, Zezhou; Abad, Oscar Torrents; Langdon, Terence G.; et al.; Micro-mechanical response of ultrafine grain and nanocrystalline tantalum; Elsevier; Journal of Materials Research and Technology; 12; 5-2021; 1804-1815  
dc.identifier.issn
2238-7854  
dc.identifier.uri
http://hdl.handle.net/11336/173744  
dc.description.abstract
In order to investigate the effect of grain boundaries on the mechanical response in the micrometer and submicrometer levels, complementary experiments and molecular dynamics simulations were conducted on a model bcc metal, tantalum. Microscale pillar experiments (diameters of 1 and 2 μm) with a grain size of ~100-200 nm revealed a mechanical response characterized by a yield stress of ~1500 MPa. The hardening of the structure is reflected in the increase in the flow stress to 1700 MPa at a strain of ~0.35. Molecular dynamics simulations were conducted for nanocrystalline tantalum with grain sizes in the range of 20-50 nm and pillar diameters in the same range. The yield stress was approximately 6000 MPa for all specimens and the maximum of the stress-strain curves occurred at a strain of 0.07. Beyond that strain, the material softened because of its inability to store dislocations. The experimental results did not show a significant size dependence of yield stress on pillar diameter (equal to 1 and 2 um), which is attributed to the high ratio between pillar diameter and grain size (~10-20). This behavior is quite different from that in monocrystalline specimens where dislocation 'starvation' leads to a significant size dependence of strength. The ultrafine grains exhibit clear 'pancaking' upon being plastically deformed, with an increase in dislocation density. The plastic deformation is much more localized for the single crystals than for the nanocrystalline specimens, an observation made in both modeling and experiments. In the molecular dynamics simulations, the ratio of pillar diameter (20-50 nm) to grain size was in the range 0.2-2, and a much greater dependence of yield stress to pillar diameter was observed. A critical result from this work is the demonstration that the important parameter in establishing the overall deformation is the ratio between the grain size and pillar diameter; it governs the deformation mode, as well as surface sources and sinks, which are only important when the grain size is of the same order as the pillar diameter.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
MICROPILLAR  
dc.subject
NANOCRYSTALLINE  
dc.subject
TANTALUM  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Micro-mechanical response of ultrafine grain and nanocrystalline tantalum  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-10-13T16:43:09Z  
dc.journal.volume
12  
dc.journal.pagination
1804-1815  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Yang, Wen. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina  
dc.description.fil
Fil: Li, Zezhou. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Abad, Oscar Torrents. Leibniz Institute for New Materials; Alemania  
dc.description.fil
Fil: Langdon, Terence G.. University of Southern California; Estados Unidos  
dc.description.fil
Fil: Heiland, Birgit. Leibniz Institute for New Materials; Alemania  
dc.description.fil
Fil: Koch, Marcus. Leibniz Institute for New Materials; Alemania  
dc.description.fil
Fil: Arzt, Eduard. Leibniz Institute for New Materials; Alemania. Universitat Saarland; Alemania  
dc.description.fil
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos  
dc.journal.title
Journal of Materials Research and Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2238785421003070  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmrt.2021.03.080