Mostrar el registro sencillo del ítem

dc.contributor.author
Ozu, Marcelo  
dc.contributor.author
Dorr, Ricardo Alfredo  
dc.contributor.author
Gutiérrez, Facundo  
dc.contributor.author
Politi, María Teresa  
dc.contributor.author
Toriano, Roxana Mabel  
dc.date.available
2015-08-18T18:48:18Z  
dc.date.issued
2013-01  
dc.identifier.citation
Ozu, Marcelo; Dorr, Ricardo Alfredo; Gutiérrez, Facundo; Politi, María Teresa; Toriano, Roxana Mabel; Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism; Biophysical Society; Biophysical Journal; 104; 1; 1-2013; 85-95  
dc.identifier.issn
0006-3495  
dc.identifier.uri
http://hdl.handle.net/11336/1704  
dc.description.abstract
This work presents experimental results combined with model-dependent predictions regarding the osmotic-permeability regulation of human aquaporin 1 (hAQP1) expressed in Xenopus oocyte membranes. Membrane elastic properties were studied under fully controlled conditions to obtain a function that relates internal volume and pressure. This function was used to design a model in which osmotic permeability could be studied as a pressure-dependent variable. The model states that hAQP1 closes with membrane-tension increments. It is important to emphasize that the only parameter of the model is the initial osmotic permeability coefficient, which was obtained by model-dependent fitting. The model was contrasted with experimental records from emptied-out Xenopus laevis oocytes expressing hAQP1. Simulated results reproduce and predict volume changes in high-water-permeability membranes under hypoosmotic gradients of different magnitude, as well as under consecutive hypo- and hyperosmotic conditions. In all cases, the simulated permeability coefficients are similar to experimental values. Predicted pressure, volume, and permeability changes indicate that hAQP1 water channels can transit from a high-water-permeability state to a closed state. This behavior is reversible and occurs in a cooperative manner among monomers. We conclude that hAQP1 is a constitutively open channel that closes mediated by membrane-tension increments.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Biophysical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Aquaporin  
dc.subject
Membrane  
dc.subject
Tension  
dc.subject.classification
Biofísica  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.identifier.eissn
1542-0086  
dc.journal.volume
104  
dc.journal.number
1  
dc.journal.pagination
85-95  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
United States  
dc.description.fil
Fil: Ozu, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay; Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;  
dc.description.fil
Fil: Dorr, Ricardo Alfredo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;  
dc.description.fil
Fil: Gutiérrez, Facundo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;  
dc.description.fil
Fil: Politi, María Teresa. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina;  
dc.description.fil
Fil: Toriano, Roxana Mabel. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Cátedra de Fisiología; Argentina; Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;  
dc.journal.title
Biophysical Journal  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ac.els-cdn.com/S0006349512050655/1-s2.0-S0006349512050655-main.pdf?_tid=97db4b84-45cc-11e5-a065-00000aacb35e&acdnat=1439918252_12aebad0aa5a1ee761680e433a95ea1f  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540253/pdf/main.pdf  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/doi:10.1016/j.bpj.2012.11.3818