Artículo
Adjoint method for a tumor growth PDE-constrained optimization problem
Knopoff, Damián Alejandro
; Fernández Ferreyra, Damián Roberto
; Torres, Germán Ariel; Turner, Cristina Vilma
Fecha de publicación:
10/2013
Editorial:
Pergamon-elsevier Science Ltd
Revista:
Computers & Mathematics With Applications (1987)
ISSN:
0898-1221
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we present a method for estimating unknown parameters that
appear on an avascular, spheric tumor growth model. The model for the
tumor is based on nutrient driven growth of a continuum of live cells,
whose birth and death generate volume changes described by a velocity
field. The model consists of a coupled system of partial differential
equations whose spatial domain is the tumor, that changes in size over
time. Thus, the situation can be formulated as a free boundary problem.
After solving the direct problem properly, we use the model for the
estimation of parameters by fitting the numerical solution with real
data, obtained via <em>in vitro</em> experiments and medical imaging. We
define an appropriate functional to compare both the real data and the
numerical solution. We use the adjoint method for the minimization of
this functional.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Knopoff, Damián Alejandro; Fernández Ferreyra, Damián Roberto; Torres, Germán Ariel; Turner, Cristina Vilma; Adjoint method for a tumor growth PDE-constrained optimization problem; Pergamon-elsevier Science Ltd; Computers & Mathematics With Applications (1987); 66; 6; 10-2013; 1104-1119
Compartir
Altmétricas