Mostrar el registro sencillo del ítem

dc.contributor.author
Galliski, Miguel Angel  
dc.contributor.author
Marquez Zavalia, Maria Florencia  
dc.contributor.author
Skoda, Radek  
dc.contributor.author
Novák, Milan  
dc.contributor.author
Copjaková, Renata  
dc.contributor.author
Pagano Género, Diego Sebastián  
dc.date.available
2021-02-24T19:59:38Z  
dc.date.issued
2019-10  
dc.identifier.citation
Galliski, Miguel Angel; Marquez Zavalia, Maria Florencia; Skoda, Radek; Novák, Milan; Copjaková, Renata; et al.; A Ta,Ti–rich oxide mineral assemblage from the Nancy beryl–columbite–phosphate granitic pegmatite, San Luis, Argentina; Springer Wien; Mineralogy and Petrology; 113; 5; 10-2019; 687-701  
dc.identifier.issn
0930-0708  
dc.identifier.uri
http://hdl.handle.net/11336/126508  
dc.description.abstract
An assemblage of tantalite-(Mn), tantalian rutile, tapiolite-(Fe), titanowodginite, ferrotitanowodginite, and hydroxycalciomicrolite occurs in the Nancy granitic pegmatite, San Luis range, Argentina. The Nancy beryl-type, beryl–columbite–phosphate subtype of LCT (Li-Cs-Ta) rare-element pegmatite was emplaced in the Paleozoic Conlara pegmatitic field. The assemblage occurs at the core margin of the pegmatite, forming an irregularly shaped, 18 by 6 cm nodule. The chemical composition of tantalite-(Mn) shows median Ta# [= (Ta/(Ta + Nb) apfu (atoms per formula unit)] and Mn# [= (Mn/(Mn + FeT) apfu] values of 0.57 and 0.64, respectively; Ti, U and Zr show maximum and [median] contents of: 3.37 [1.25] wt.% TiO2, 0.58 [0.24] wt.% UO2, and 0.72 [0.50] wt.% ZrO2. The unit-cell parameters indicate a moderately ordered structure. Tantalian rutile occurs as anhedral grains replacing tantalite-(Mn), associated with hydroxycalciomicrolite. Its chemical composition shows moderate to high Ti contents, with a maximum and [median] of 64.77 [38.67] wt.% TiO2. The proportion of Ta is very high, with 49.67 [39.59] wt.% Ta2O5. Tapiolite-(Fe), with 82.49 [81.86] wt.% Ta2O5, 2.51 [2.33] wt.% Nb2O5, 0.94 [0.79] wt.% TiO2, and 13.31 [13.18] wt.% FeO, has uniform Ta# and Mn# values, 0.95 and 0.09, respectively. Titanowodginite shows Ta# values ranging from 0.82 to 0.88, whereas in ferrotitanowodginite it ranges from 0.88 to 0.94. The Mn# value is similar in titanowodginite (0.51–0.64), and decreases in the ferrotitanowodginite (0.04 to 0.41). These minerals form a replacement sequence of tantalite-(Mn). Hydroxycalciomicrolite occurs in two generations: I and II. The dominant A cation is Ca, with a median value of 14.39 wt.% CaO. The MnO content, with a median of 1.16 wt.% MnO, is relatively constant. The amount of UO2 is usually below 3 wt.%, but locally attains 6.9 wt.%, and exceptionally 43.6 wt.%, in irregular rims that show a low analytical total, giving compositions that depart from the expected stoichiometry; it is clearly a subsolidus phase. In the more plausible explanation for the evolution of this assemblage, the magmatic crystallization of tantalite-(Mn) was followed during the early subsolidus stage by its partial replacement by tantalian rutile + tapiolite-(Fe) + titanowodginite + ferrotitanowodginte, associated with hydroxycalciomicrolite I, and later, by hydroxycalciomicrolite II produced by the influx of a late Fe–Ti–Ca-bearing fluid phase likely entering the pegmatite from the wall rocks.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Wien  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARGENTINA  
dc.subject
HYDROXYCALCIOMICROLITE  
dc.subject
RARE-ELEMENT GRANITIC PEGMATITE  
dc.subject
SIERRAS PAMPEANAS  
dc.subject
TANTALIAN RUTILE  
dc.subject
TANTALITE-(MN)  
dc.subject
WODGINITE-GROUP MINERALS  
dc.subject.classification
Mineralogía  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Ta,Ti–rich oxide mineral assemblage from the Nancy beryl–columbite–phosphate granitic pegmatite, San Luis, Argentina  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-20T17:48:33Z  
dc.journal.volume
113  
dc.journal.number
5  
dc.journal.pagination
687-701  
dc.journal.pais
Austria  
dc.journal.ciudad
Viena  
dc.description.fil
Fil: Galliski, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina  
dc.description.fil
Fil: Marquez Zavalia, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina  
dc.description.fil
Fil: Skoda, Radek. Masaryk University; República Checa  
dc.description.fil
Fil: Novák, Milan. Masaryk University; República Checa  
dc.description.fil
Fil: Copjaková, Renata. Masaryk University; República Checa  
dc.description.fil
Fil: Pagano Género, Diego Sebastián. Universidad Tecnológica Nacional. Facultad Regional Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina  
dc.journal.title
Mineralogy and Petrology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00710-019-00673-z  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00710-019-00673-z