Mostrar el registro sencillo del ítem

dc.contributor.author
Mestres, Gemma  
dc.contributor.author
Perez, Roman A.  
dc.contributor.author
D'elía, Noelia Laura  
dc.contributor.author
Barbe, Laurent  
dc.date.available
2020-03-25T17:27:35Z  
dc.date.issued
2019-04  
dc.identifier.citation
Mestres, Gemma; Perez, Roman A.; D'elía, Noelia Laura; Barbe, Laurent; Advantages of microfluidic systems for studying cell-biomaterial interactions: Focus on bone regeneration applications; Institute of Physics Publishing; Biomedical Physics and Engineering Express; 5; 3; 4-2019  
dc.identifier.issn
2057-1976  
dc.identifier.uri
http://hdl.handle.net/11336/100723  
dc.description.abstract
The poor correlation between in vitro and in vivo studies emphasises the lack of a reliable methodology for testing the biological properties of biomaterials in the bone tissue regeneration field. Moreover, the success of clinical trials is not guaranteed even with promising results in vivo. Therefore, there is a need for a more physiologically relevant in vitro model to test the biological properties of biomaterials. Microfluidics, which is a field concerning the manipulation and control of liquids at the submillimetre scale, can use channel geometry, cell confinement and fluid flow to recreate a physiological-like environment. This technology has already proven to be a powerful tool in studying the biological response of cells in defined environments, since chemical and mechanical inputs as well as cross-talk between cells can be finely controlled. Moving a step further in complexity, biomaterials can be integrated into microfluidic systems to evaluate biomaterial-cell interactions. The biomaterial-microfluidics combination has the potential to produce more physiologically relevant models to better screen the biological interactions established between biomaterials and cells. This review is divided into two main sections. First, several possible cell-based assays for bone regeneration studies in microfluidic systems are discussed. Second, and the ultimate goal of the review, is to discuss how the gap between in vitro and in vivo studies can be shortened by bridging the biomaterials and microfluidics fields.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Physics Publishing  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIOMATERIALS  
dc.subject
BONE REGENERATION  
dc.subject
CELL CULTURE  
dc.subject
IN VITRO  
dc.subject
MICROFLUIDICS  
dc.subject
MICROSYSTEMS  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Advantages of microfluidic systems for studying cell-biomaterial interactions: Focus on bone regeneration applications  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-26T20:20:40Z  
dc.journal.volume
5  
dc.journal.number
3  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Bristol  
dc.description.fil
Fil: Mestres, Gemma. Uppsala Universitet; Suecia  
dc.description.fil
Fil: Perez, Roman A.. Universitat Internacional de Catalunya; España  
dc.description.fil
Fil: D'elía, Noelia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Barbe, Laurent. Uppsala Universitet; Suecia  
dc.journal.title
Biomedical Physics and Engineering Express  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/2057-1976/ab1033  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/2057-1976/ab1033