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We present an alternative numerical approach to compute the number of particles created inside a
cavity due to time dependent boundary conditions. The physical model consists on a rectangular
cavity, where a wall always remains still while the other wall of the cavity presents a smooth
movement in one direction. The method relies on the setting of the boundary conditions (Dirichlet
and Neumann) and the following resolution of the corresponding equations of modes. By a further
comparison between the ground state before and after the movement of the cavity wall, we finally
compute the number of particles created. To demonstrate the method we investigate the creation of
particle production in vibrating cavities, recovering already known results in the appropriate limits.
Within this approach, the dynamical Casimir effect can be investigated making it possible to study
a variety of scenarios where no analytical results are known. Of special interest is of course the
realistic case of the electromagnetic field in a three-dimensional cavity, with TE-mode and TM-
mode photon production. Furthermore, with our approach we are able to calculate numerically
the particle creation in a tuneable resonant superconducting cavity by the use of generalised Robin
boundary condition. We compare the numerical results with analytical predictions as well as a
different numerical approach. Its extension to three dimensions is also straightforward.

PACS numbers: 42.50.-p, 12.20.Ds,03.70.+k,11.10.-z

I. INTRODUCTION

One of the most intriguing and fascinating features of quantum field theory resides in the non-trivial nature of
its vacuum states. Quantum fluctuations present in the vacuum are responsible for non-classical effects that can be
experimentally detected. The most well known of such phenomena is the Casimir effect. A yet even more fascinating
feature of the quantum vacuum appears when considering dynamical boundaries conditions. The presence of moving
boundaries leads to a non stable vacuum electromagnetic state, resulting in the generation of real photons, which is
an amazing demonstration of the existence of quantum vacuum fluctuations of QED, referred to in the literature as
the Dynamical Casimir Effect (DCE) [1–5].

A scenario of particular interest are so-called vibrating cavities [6] where the distance between two parallel ideal
mirrors changes periodically in time. A “moving mirror” modifies the mode structure of the electromagnetic vacuum.
If the mirror velocity, v, is much smaller than the speed of light, c, then the electromagnetic modes adiabatically
adapt to the changes and no excitations occur. Otherwise, if the mirror experiences relativistic motion, changes occur
non-adiabatically and the field can be excited out of the vacuum, generating real photons.

The quantum theory of relativistic fields with moving boundaries was first explored by Moore in a remarkably
original paper on the quantum formulation of linearly polarised light in a one-dimensional moving cavity [7]. The
primary result of this investigation was the discovery that moving mirrors in vacuum create photons. Later, motivated
by developments in quantum field theory in curved spacetime, the specialisation to a single moving mirror in Minkowski
spacetime was carried out by authors in [8, 9], who again found that non-uniformly accelerating mirrors generate
radiation. From the theoretical point of view, it is widely accepted that the most favorable configuration in order
to observe the phenomenon is a vibrating cavity in which it is possible to produce resonant effects between the
mechanical and field oscillations. Although the direct measurement of radiation generated by moving mirrors is an
important experimental challenge, it was asserted [10] that photon creation induced by time-dependent boundary
conditions has been observed experimentally in superconducting circuits. This experiment consists of a coplanar
waveguide terminated by a superconducting quantum interference device (SQUID), upon which a time-dependent
magnetic flux is applied. A related experiment involving a Josephson metamaterial embedded in a microwave cavity
has been described in Ref. [11]. These experiments stimulated new theoretical research on role of dynamical Casimir
physics in quantum information processing, quantum simulations and engineering of nonclassical states of light and
matter [12–16]. There are also ongoing experiments aimed at measuring the photon creation induced by the time-
dependent conductivity of a semiconductor slab enclosed by an electromagnetic cavity [17], as well as proposals
based on the use of high frequency resonators to produce the photons, and ultracold atoms to detect the created
photons via superradiance [18]. However this successful setup, no optical frequency photons produced by DCE have
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been seen yet. The main obstacle to its realisation in a straightforward way (by displacement of at least one of
the cavity boundaries) is a very low ratio of the boundary velocity to the speed of light accessible nowadays in
laboratory experiments. Therefore, the only possibility for DCE observation with non-relativistic velocities is to
accumulate the effect under resonance conditions. Fortunately, recently studies involving superconducting circuits
showed the existence of parametric resonance in a superconducting cavity [19–22]. In [24], authors studied thoroughly
the nonlinear cavity response, turning these superconducting cavities into promising experimental setups for the DCE.

Research in the field has mainly concentrated on one dimensional models, which are useful for giving an account
of the main physical processes participating in the phenomenon. A cavity made of two perfectly parallel reflecting
mirrors, one of which oscillates with a mechanical frequency equal to a multiple of the fundamental of the static
cavity (while the other one is at rest) is a typical case where this effect takes place [25–30]. As said before, since
the maximal velocity of the boundary mirror that could be achieved under laboratory conditions is very small in
comparison with the speed of light, “parametric resonance” becomes relevant (resonance between the mechanical
and field oscillations, where a gradual accumulation of the small changes in the quantum state results finally in
a significant effect). Thus, many authors have studied vibrating cavities where the boundary wall performs small
harmonic oscillations at twice the unperturbed eigenfrequency of the lowest field mode. In most works this problem
has been analytically studied through an expansion of the equations of motion of the field in terms of the small
oscillation amplitude to find an approximative solution (Multiple Scale Analysis (MSA))[31]. This method represents
an improvement of a perturbative approach [25–27] and yields solutions at longer times. Depending on the law of
motion of the driven wall, some other asymptotical solutions have been found for cases of harmonic motion Refs.[8, 32].
In all cases, analytical approximations or strategies are necessary due to the complexity of the problem which involves
a great number of degrees of freedom (those of the field involved). The more realistic case of a three-dimensional cavity
is studied in [31–35]. The important difference between one- and higher-dimensional cavities is that the frequency
spectrum in one spatial dimension is equidistant while it is in general non-equidistant for more spatial dimensions. An
equidistant spectrum yields strong intermode coupling whereas in case of a non-equidistant spectrum only a few or
even more modes may be coupled allowing for exponential photon creation in a resonantly vibrating three-dimensional
cavity. In all cases, the equations of motion of the field modes of the electromagnetic field inside vibrating cavities of
one- or higher dimensions are imposible to solve analytically. In all references cited above, authors make assumptions
that simplify in some way the problem, and allow analytical estimation of the particle created in particular regimes.

The electromagnetic field inside a dynamical cavity can be decomposed into components corresponding to the
electric field parallel or perpendicular to the moving mirror. It is then possible to introduce vector potentials for each
polarisation, transverse electric (TE) and transverse magnetic (TM) [32]. The equations of motion for TE-modes in
a dynamical rectangular cavity are equivalent to the equations of motion for a scalar field with Dirichlet boundary
conditions [31]. More complicated boundary conditions, so-called generalized Neumann boundary conditions, emerge
when studying TM-modes [32, 33]. In most of the works cited above only TE-polarisation is treated.

The calculations involved in determining the physical outcome of particle creation processes, though trivial to
state, are often hard or impossible to complete. Usually it is necessary to find the solution of a set of space/or
time-dependent field equations, with initial conditions covering a complete basis of functions. Even though one can
rely on simplifying approximations, the set of problems for which solutions can be found analytically is considerably
limited. In order to get an insight of the whole non linear problem with intermode coupling, numerical schemes are
much required. In [36], the author has introduced a formalism allowing numerical investigation of the DCE for scalar
particles in one-dimensional cavity. By introducing a particular parametrisation for the time evolution of the field
modes yielding a system of coupled first-order differential equations with Dirichlet boundary conditions. The solutions
of this system determine the number of created particles and can be obtained by means of standard numerics. The
author employs this formalism to investigate the creation of real particles in a resonant and off-resonant cavity and
compare numerical results with analytical predictions. The generalisation of this method to higher dimensional cavities
is said to be straightforward. This makes it possible to study the TE-mode photon creation in a three-dimensional
rectangular cavity because it can be related to the production of massive scalar particles in a one-dimensional cavity
[37]. However, as stated by the author, more complicated boundary conditions appearing for example when studying
TM-mode photons cannot be treated within that numerical approach. On the other hand, in [38], authors present a
Maple package in order to solve Moore equation (by considering different trajectories of the wall), so as to compute
the number of particles created inside one dimensional cavity (also Dirichlet boundary conditions and no extension to
higher dimensions) based on [39–43]. No further numerical approaches of the DCE have been reported for Dirichlet
and Neunman boundary conditions. Our first approach in studying the particle creation process in the DCE has been
done by considering the experimental setup of a superconducting qubit at one end of the cavity [23]. This particular
situation included a more complicated boundary condition (compared to Dirichlet and Neunman) and could not be
computed in the traditional way. This alternative procedure to computed the particle creation can be extended to
different time dependent boundary conditions as in order to study the particle creation in a vibrating cavity fully
numerically.
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In the present paper we shall introduce a detailed numerical approach to simulate DCE and compute the number of
particles created by taking into account the intermode coupling and holding all degrees of freedom of the problem. We
shall consider different type of boundary conditions for simulating different physical situations: Dirichlet, generalised
Neumann and generalized Robin. For each type of boundary condition considered, we shall study the frequency
spectrum inside the vibrating cavity as it is close related to the particle creation process. By introducing numerical
considerations of the processes involved in each case, we shall show the particle created and compare the results obtain
with analytical predictions. We shall see that our approach reproduces known analytical results and helps set light
into regions where analytical approximates do not work. With this formalism at hand, the DCE can be investigated
numerically making it possible to study a variety of scenarios where no analytical results are known (large amplitude
oscillations or arbitrary wall motions). Of special interest is of course the realistic case of the electromagnetic field
in a three-dimensional cavity, i.e. TE-mode and TM-mode photons creation. Finally, by introducing generalised
Robin boundary conditions (see Ref.[44] for previous studies of this type of time boundary condition), we can obtain
a numerical analysis of the particle creation in a tuneable superconducting cavity [24]. The paper is organised as
follows. In Sec.II, we discuss the boundary conditions for different situations of a field inside a cavity. In Sec.III, we
detail all the procedures applied in our numerical approach. In Sec.IV, we describe the cavity spectrum for different
boundary conditions and we show how this spectrum is related to the number of particle creation in each case. We
shall compare our numerical results with analytical predictions. Furthermore, we show the particle creation in cases
where there are no analytical results obtained. Finally, in Sec.V we make our conclusions.

II. BOUNDARY CONDITIONS

Firstly we consider a rectangular cavity formed by perfectly conducting walls with dimensions Lx, Ly and Lz. The
wall at x = Lx is at rest for t < 0 and starts to move at t = 0, following a given trajectory Lx(t) = Lx − εA sin(Ωt),
being ε a small dimensionless parameter, Ω an external frequency and A the amplitude of the wall’s oscillation. In

order to consider the electromagnetic field inside the cavity, we introduce the four-vector potential Aµ = (ϕ, ~A) which

satisfies the wave equation 2 · ~A = 0.
While for the static walls, the boundaries conditions are the usual ones:

~E‖ = 0; ~B⊥ = 0. (1)

On the moving walls, however, we must be very careful with the boundary conditions. The electromagnetic field inside
a dynamical cavity can be decomposed into components corresponding to the electric field parallel or perpendicular
to the moving mirror. It is then possible to introduce vector potentials for each polarisation, transverse electric (TE)
and transverse magnetic (TM). As the mirror moves in the x-direction, one can decompose the electromagnetic field in
TE and TM modes with respect to the x-axis, as explained for example in [33]. By imposing the boundaries condition
in the Lorentz frame (the one in which the mirror is at rest), we can write:

~E(TE) = −∂t~A(TE), ~B(TE) = ∇× ~A(TE); (2)

~B(TM) = ∂t~A
(TM), ~E(TM) = ∇× ~A(TM), (3)

which means that we use different vector potentials for each polarisation. In terms of these potentials, the boundary
condition are relatively simple. Let us denote by S the laboratory frame and by S′ the instantaneous moving frame.

In S′ the TE vector potential satisfies Dirichlet boundary conditions (DBC) ~A′(TE)(x′ = 0, y′, z′, t′) = 0. Therefore,

on the moving mirror ~A(TE)(x = Lx(t), y, z, t) = 0. Similarly, for the TM vector potential, it is easy to check that

ηµ∂µ~A
(TM)(x = Lx(t), y, z, t) = (∂x+ L̇x(t)∂t)~A

(TM)(x = Lx(t), y, z, t) = 0, which is a generalised Neumann boundary

condition (NBC) with ηµ = (L̇x, 1, 0, 0). On the static mirror the boundary conditions are ~A(TE)(x = 0, y, z, t) = 0

and ∂xA
(TM)
z (x = 0, y, z, t) = ∂xA

(TM)
y (x = 0, y, z, t) = 0. This accounts the same for the other directions of the cavity

considering static mirrors at y = 0, y = Ly, z = 0 and z = Lz. It is easy to note that by properly taking into account
the polarisation of the different modes we can find the electromagnetic field inside the cavity since the behaviour of
each TE vector field is related to the problem of a scalar field subjected to DBC, while the TM vector field deals with
generalised NBC. As can be seen, both boundary conditions differ in the fact that one is applied on the field and the
other one is applied on its spatial derivative.

In order to simulate all possible cases where the DCE can be tested, we can also consider generalised Robin boundary
condition (RBC). In this particular situation, we would be considering the experimental setup of a superconducting
waveguide (Lx � Ly, Lz) ending by a SQUID (located at x = Lx) as explained in Sec.I. A time dependent magnetic
flux through the SQUID generates a time dependent boundary condition. In such a case, the field satisfies the wave
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equation in the cavity, along with the boundary conditions imposed by the SQUID α1(t)∂xA(Lx, t) +α2(t)A(Lx, t) +

α3(t)Ä(Lx, t) = 0, where α1, α2 and α3 are defined by the physical properties of the cavity. For the static wall of the
superconducting waveguide (x = 0), we can simply consider NBC or DBC.

So far, we have shown that by solving different boundary conditions, we model different physical situations: TE
modes (Dirichlet), TM modes (generalised Neumann) and the experimental setup of a SQUID at one end (generalised
RBC). In order to know the electromagnetic field inside the cavity we just have to consider the TE and TM configu-
ration all together. Moreover, by knowing the initial configuration of the field and the one modified by the boundary
conditions at a final time, we can estimate the number of particles created in the cavity. In the following, we shall
explain this procedure in detail.

The vector potential field operator can be written in terms of the creation â†n and annihilation ân operators as:

A(x, t) =

∞∑
n

[
ânψn(x, t) + â†nψ

∗
n(x, t)

]
. (4)

Here, ψn(x, t) are the mode functions of the field and are chosen so as to satisfied the boundary conditions mentioned
above. For t < 0, ψn(x, t) form a complete orthonormal set of solutions of the wave equation and each field mode is
determined by a non-negative integers n. When the mirror is moving, we do not have a complete orthonormal set of
solutions. Then, we should expand each mode with respect to an instantaneous basis for t > 0 as

ψn(x, t) =

∞∑
k=1

Q
(n)
k (t)φk(x, t), (5)

where k is a positive integer and Q
(n)
k (t) are canonical variables to be determined. By inserting the expansion of field

modes Eq.(5) into the wave equation and integrating over spatial dimensions leads to the equation of motion for the
canonical variables expressed as:

Q̈(n)
m + ω2

m(t)Q(n)
m =

∑
s

Sms(t, Lx, L̇x, L̈x, ωn, Qm, Qs, Q̇s)Q
(n)
s +

∑
s

Tms(t, Lx, L̇x, L̈x, ωn, Qm, Qs, Q̇s)Q̇
(n)
s , (6)

where the supra-index n refers to the field eigenstate n. We shall have a set of m equations of motions for each mode n
of the field considered. As the free electromagnetic field is an operator which can be written as the sum of an infinite
number of harmonic oscillators, the number of field modes involved will be settled by the definition of a frequency
cutoff Λ, which will size of the numerical problem to be solved. The frequency of the cavity ωm(t) is determined in
each case by the boundary condition. We shall see in the following that the field mode equation always has the same
structure so it is easy to include all cases in the same numerical approach.

III. NUMERICAL METHOD

In this Section we describe the numerical method used for solving the equation of motion of the field modes
determined by different boundary conditions. We shall see that all set of differential equations are very similar, being
Dirichlet the easiest and Robin the most complicated one.

We shall solve the set of coupled differential equations for the canonical variables Q
(n)
k and hence, obtain information

about the behaviour of the field modes, by performing a change of variables so as to reach a new system of one order
differential equations:

Q̇m = Um,

U̇m = −ω2
m(t)Qm +

∑
s

Sms(t, ., .)Qs +
∑
s

Tms(t, ., .)Q̇s, (7)

where Sms(t, ., .) and Tms(t, ., .) are the coefficients accompanying Qs and Q̇s in Eq.(6). We have dropped the
supra-index for simplicity. The structure of the intermode coupling mediated by the coupling matrix Sms(t, ., .) and
Tms(t, ., .) matrices depends on the particular kind of boundary conditions. In most cases, we consider static wall in
x = 0 and a moving wall in the x-direction, defined as Lx(t) = Lx −Aε sin(Ωt), where Lx is the distance of two walls
in the static situation, Ω an external frequency, ε a dimensionless parameter which characterises the small deviation
of the wall from the initial static position and A the amplitude of the wall’s oscillation. In the particular case of
generalised Robin boundary conditions, we consider a SQUID located at x = Lx.
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The initial conditions, specified for each field mode in all cases are:

Q
(n)
k (0) =

1√
2ωn

δk,n; Q̇
(n)
k (0) = −i

√
ωn
2
δk,n; (8)

which indicates that the field modes and their derivatives are continuous at t = 0, as long as Lx(t) and L̇x are smooth
functions. For a time dependence of the boundary Lx(t) which is not sufficiently smooth, (for example discontinuities
in its time-derivative), one may expect spurious particle creation. In Appendix A, we present the different set of
differential coupled equations obtained in the case of using Dirichlet, Neumann and generalized Robin boundary
conditions.

For each of the set of differential coupled equations and their initial conditions, we have used an integration scheme
based on a fourth order Runge-Kutta-Merson numerical method between t = 0 and a maximum time tmax > 0. The
goal of this family of solvers is to introduce a control in the time step size for keeping the error of the solution within
a prescribed bound, very useful when in a given problem there are abrupt changes in the coefficients involved [45].
The truncation error of the usual fourth Runge-Kutta methods can be made equal to an approximated expression:

∼ h5f5(xi, f1, f2, f3, f4) +O(h6), (9)

where h refers to the time increment in each evaluation step. The modifications introduced with Merson algorithms
with respect to the normal four order Runge-Kutta method consist in the design of a special function of fifth order for
Eq.(9) using a linear combination of the four earlier functions. After some algebra, it is easy to arrive to an expression
for an estimated error of this step of integration. This error can be prescribed under a certain defined value and
consequently the time step must be chosen in order to accomplish this prescription. If under certain time step the
error estimation is greater than the prescription values, the calculus is reinitiate with a minor time step that matches
the estimated error, and repeated until the total original time step is reached. Using this procedure, the algorithm can
be initiated with a relatively high time step and when the variation of the coefficients or the rapidity of the variations
of the solutions require less time steps, the local time is turn on and the algorithm alone searches for the time step
that maintains the error under the prescribed value. By using this algorithm we can perform integrations without
time limitations and can explore solutions at any time scale required.

In all cases, the moving wall is at rest at t = 0 and then, is turned on for times between 0 < t < tF , with tF < tmax,
where the wall remains static again. For times t < 0 and t > tF , the cavity is a static one and we know the set of
orthonormal functions. The quantisation of the system is straightforward through creation and annihilation operators:

Qn(t < 0) =
1√
2ωn

(âne
−iωnt + â†ne

iωnt), (10)

with frequency ωn(t) = 1/Lx
√

(πn)2 +M2, where Lx is the initial length of the cavity and M is a dimensionless “mass
parameter” (in the case of a 3D cavity ). For one-dimensional cavity M = 0. The time-independent annihilation
and creation operators ân, â†n associated with the particle notion for t ≤ 0 are subject to the commutation relations
[ân, âm] = [â†n, â

†
m] = 0 and [ân, â

†
m] = δnm. The initial vacuum state |0, t ≤ 0〉 is defined by:

a†n|0, t ≤ 0〉 = 0 ∀ n. (11)

When the cavity dynamics is switched on at t = 0 and the wall follows the prescribed trajectory Lx(t), the field
modes are coupled. Then, the Qn can be written as:

Qn(t ≥ 0) =
∑
m

1√
2ωm

(âmε
m
n (t) + â†mε

∗m
n (t)), (12)

with complex functions εmn (t) that satisfy the equation of modes. When the motion ceases and the wall is at rest
again for t > tF , Qn(t) can be expressed again as:

Qn(t ≥ tF ) =
1√
2ωFn

(ˆ̃an(tF )e−iω
F
n (t) + ˆ̃a†n(tF )eiω

F
n (t)) (13)

where the annihilation and creation operators ˆ̃an, ˆ̃a†m and ωFn correspond to the particle notion for t ≥ tF . The final
vacuum state |0, t ≥ tF 〉 is defined by:

ˆ̃a†n|0, t ≥ tF 〉 = 0 ∀ n. (14)
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As expected, the initial state particle operators ân and â†n are linked to the final state operators ˆ̃an and ˆ̃a†n by a

Bogoliubov transformation ˆ̃an =
∑
m(αmn(tF )âm + β∗mn(tF )â†m). The total number of particles created in a mode n

during the motion of the wall is given by the expectation value of the particle number operator ˆ̃a†nˆ̃an associated with
the particle motion for t ≥ tF with respect to the initial vacuum state:

Nn(tF ) = 〈0, t ≤ 0|ˆ̃a†nˆ̃a†n|0, t ≤ 0〉 =
∑
m

|βmn(tF )|2. (15)

This is the way the number of particles created has been computed in the Literature, analytically (by solving
the Bogoliubov transformation [33, 37]) and numerically (by implementing a numerical approach to compute Nn(t)
as defined above [37]). However, there is also another possibility to achieve similar results. Herein, we propose an
alternative procedure. As we can assume the unperturbed final state (t ≥ tF ) to be of the form:

Qn(t ≥ tF ) =
1√
2ω1

n

(Ân(tF )e−iω
F
n t + B̂n(tF )eiω

F
n t), (16)

We can therefore multiply both terms of the equation by exp (−iωFn t) and take the mean value in tF < t < tmax. In
this way, we are able to numerically evaluate |Bn|2 and the particle number in field mode n as a function of time as
Nn(t) = |Bn(t)|2/(2ωFn ). In our numerical approach we solve the equation of motion for the field modes (for Dirichlet,
generalized Neumann and generalized Robin boundary conditions) and evaluate the number of particles created in each
case. In the Appendix B, we show the excellent agreement between our numerical scheme, the analytical prediction
of Ref. [33] and the numerical approach proposed in Ref. [37].

Our numerical scheme so as to compute the number of particles created in a mode field for each case considered is
basically resumed as: i) the definition of the basis of orthonormal functions satisfying the boundary conditions and
the frequency spectrum of each cavity; ii) the resolution of a set of differential coupled equations for the canonical
functions Qn defined by the boundary conditions chosen; and iii) computation of Bn(t) so as to estimate de number
of particles created.

In order to obtain the numerical results presented in the following Sections we proceed in the following way. Two
cut-off parameters Λ (for the field modes considered) and Λm (for the number of canonical variables considered) are
introduced to make the system of differential equations finite and suitable for a numerical treatment. The system of
n×m coupled differential equations is then evolved numerically from t = 0 up to a final time tF and the expectation
value of Eq.(15) is calculated for several times in between. By doing so we interpret tF as a continuous variable
such that Eq.(15) becomes a continuous function of time. Consequently, the stability of the numerical solutions with
respect to the cut-offs has to be ensured. In particular Λ will be chosen such that the numerical results for the number
of particles created in single modes are stable. In most cases, it is enough to choose Λm = Λ. In our units, the spectral
modes kn = Ωn are given in units of 1/Lx (knLx is dimensionless) and consequently time is measured in units of Lx.

IV. PARTICLE CREATION

In this Section, we shall show the particle creation for the different physical situations considered above. In all
cases, we shall show that the numerical results obtained are in complete agreement with the analytical predictions
existing in the Literature.

1. Dirichlet and Neumann boundary conditions

When studying the particle creation in a cavity with moving walls, it is important to study the energy spectrum
inside the cavity. For both Dirichlet (DBC) and Neumann boundary conditions (NBC) the eigenfrequencies inside
the cavity satisfy the following condition:

ωn(t) =
1

Lx(t)

√
(πn)2 +M2, (17)

where n is natural number. If the field is massless (which corresponds to a one dimensional cavity), then the spectrum
is equidistant, i.e. the difference between two consecutive eigenfrequencies is constant. Otherwise, if M has nonzero
values, the spectrum is non-equidistant, corresponding to the one of a three-dimensional cavity.

For example, by allowing the wall to have a frequency Ω = 2ω1, we can see that the particle creation inside the
cavity behaves as shown in Fig. 1(a). It has already been derived analytically that for a perturbation of the field
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mode equation, the particle creation is quadratic in time (holding for times ∼ 1/(ε)) and linear for a later time
regime [33]. The numerical results perfectly agree with the analytical predictions at times t ≤ 1/ε showing the initial
quadratic increase of the total particle number and the number of particles created in the resonance mode n = 1.
Some analytical approaches, as Multiple Scale Analysis (MSA), reproduce these results if ε� 1. However, by solving
the equation of motion of each field mode (Eq.(A1)), we can go beyond the multiple scale analysis and see that the
particle creation is exponential at very longer times.

∼ x2
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FIG. 1: (a) Left: Number of particles for the mode field 1, N1, of a massless field inside a cavity with a moving wall under the
perturbation Ω = 2ω1 with DBC. Parameters used: ε = 0.001, Λ = Λm = 25. (b) Right: LogPlot behaviour for the number of
particles created N1 coefficient for different values of the mass parameter M under the perturbation of Ω = 2ω1 under DBC,
such as M = 1, M = 5 and M = 10. Parameters used: ε = 0.001, Λ = 10, Λ = 25 and Λm = 25.

We can give a further significance to the consideration of M in Eq.(17). If we assume that the “mass parameter” is

M = L0k‖, we can identify k‖ = π
√

(ny/Ly)2 + (nz/Lz)2 to non-dynamical cavity dimensions. Then, the number of
TE-mode photons created in a three-dimensional cavity equals the number of scalar particles of “mass” k‖ created in
a one-dimensional cavity [36]. If we consider that the field has mass, then we can see that the spectrum becomes non-
equidistant and the particle creation behaves different as it is exponential at very short times. For a non-equidistant
spectrum, in Figure 1(b), we show the number of particles created for the mode 1 of the field and different values of
the mass. This result has been obtained by an analytical approach [33, 37] assuming a small perturbation leading

to an exponential growth defined as N1(t) = sinh(π2ε t/4L0

√
π2 +M2L2

0)2 for the first mode [37]. This exponential
behaviour again agrees with our results, however we do not have the constraint of a small perturbative motion as we
solve the equation of motion of all field modes.

As said before, the only “assumption” we make is the number of field modes Λ that the field contains. We can
investigate how fast we reach a stable solution as function of the number of modes used to solve the set of coupled
differential equations (Eq.(A1)) in order to assure autonomy of the solution obtained. In Fig. 2(a), we show the total
number of particles Nt created for a fixed time by changing the total number of modes for the parameters considered
in Fig. 1(a). Since DBC yield the simplest set of differential coupled equations, in this case, a total number of field
modes of Λ = 10 already gives an accurate solution, being very reliable when Λ ≥ 20. In Fig. 1(b), we plot the
number of particles created N1 for M = 1 for Λ = 10 (stronger dashed black line) and Λ = 25 thinner dotted black
line. We can note that black dashes and black dots overlap, meaning that the precision of the solution is very accurate
for both cases ( considering Λ = Λm).

As the electromagnetic field involves both Neumann and Dirichlet boundary conditions, we can analyse separately
a scalar field satisfying DBC and generalised NBC. This can be done this way since TE modes of the electromagnetic
field are essentially described by Dirichlet scalar field, while TM modes correspond to a Neumann scalar field (as
explained in Sec.II). In Fig. 2(b), we present the resonant photon creation inside a three dimensional oscillating
cavity taking the vector nature of the electromagnetic field into account. We compute the number of particles created
N1 for a massless field for both Dirichlet (blue dashes) and Neumann (red dots) conditions under resonance condition
Ω = 2ω1. In [33], authors have studied in detail the resonant situation Ω = 2ωk, and showed that the exponential
growth of created photons is greater for TM modes. This implies a novel contribution since there has been no
numerical verification of this result.

2. Results beyond analytical estimations

In the following we shall show results beyond analytical estimations. As we do not consider any approximation in
our numerical approach, we can numerically estimate the behaviour of particle creation when the motion of the cavity
wall is considered arbitrary. It is important to note that the motion of the wall must be described by smooth and
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FIG. 2: (a) Left: Total number of particles created inside a cavity with DBC and zero mass as function of the total number of
field modes Λ considered at a fixed time. Parameters used: ε = 0.01, Ω = 2ω1. (b) Right: Number of particles for the mode
field 1, N1, of a massless field inside a cavity with a moving wall under the perturbation Ω = 2ω1 with DBC (red dashes) and
generalised NBC (blue line). Parameters used: ε = 0.01, M = 0.5.

derivable functions in order to avoid the creation of spurious particle. In addition, the cavity wall has to return to its
original position after a time TF has elapsed. However, we are not limited to perturbative motions and can consider
different values of ε, as can be observed in Figs. 3 (a) and (b).
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FIG. 3: Particle creation when the wall is excites as Ω = 2ω1 for different fields in the cavity obying DBC: (a) one-dimensional
field (M = 0) and (b)a massive fieldM = 1. In all cases, we show different values of ε.

In Fig. 3 (a), we show the particle creation for a escalar field satisfying DBC (M = 0). For this situation, it is well
known that particles are created quadratically in the perturbative regime, that means for times t ≤ 1/ε. However, for
bigger values of ε, there has no analytical prediction been obtained. As has been shown, we can obtain the expected
results in the corresponding limits. In addition, we can predict that for bigger values of ε, the behaviour is no longer
a power law function. In Fig. 3(b), we show the particle creation for a massive field satisfying DBC. In this case, we
choose M = 1 and compute the particle creation for different values of ε. It is easy to note the behaviour predicted by
Refs. [31, 33, 37] by the MSA analytical estimations for ε = 0.001 in times t ≤ 1/ε. However, we can add information
as for how the particle creation behaves as ε increases.

3. Generalized Robin boundary conditions

As for generalized Robin boundary conditions (RBC), the eigenfrequencies inside the cavity should satisfy a more
difficult relation, such as [24, 46]:

(ωnLx) tan(ωnLx) + χ0(ωnLx)2 = b0 cos(f0). (18)

We numerically solve this transcendent equation using a single Newton-Raphson method with an stopping error of
10−16. We therefore obtain the eigenfrequencies inside the superconducting cavity as shown in Fig. 4, where we have
plotted the difference of consecutive eigenfrequencies (from frequency ω1 to frequency ω6) for different parameters
of the cavity. If we leave the experimental value χ0 = 0.05 fixed, we can study the difference between consecutive
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eigenfrequencies as a function of V0. We can see that the bigger the value of V0, the more equidistant is the spectrum.
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FIG. 4: Difference of consecutive eigenfrequencies as a function of V0 = b0 cos(f0), for a fixed value of χ0 = 0.05 for generalised
Robin boundary conditions. The constant line represents the difference of consecutive frequencies for all values of cavity for
Dirichlet and generalised Neumann conditions.

In Figure 4, we can note that there is an equidistant and a non-equidistant region of the cavity spectrum (differently
to the other case). This particularity allows us to interpolate between different situations. This means that by setting
the parameters of the generalised RBC, we can re-obtain results corresponding to either DBC and NBC (depending
on which term is nonzero) (see Eq.(A8)), or in other case, explore new physical situations.

In Figure 5(a), we present the number of particles created N1 for a massless field in a superconducting waveguide
satisfying generalised RBC by solving the set of differential equations presented in Eqs.(A6) and (A8). By choosing
parameters V0 = 20 and ε = 0.005, we convert the generalised RBC into a DBC. This means that by setting the right
combination of parameters, we are investigating the equidistant part of the spectrum. As expected, we verify that the
coupling between infinite numbers of modes generates a quadratic or linear growth of the number of particles for short
and long time-scales respectively. In this case, it is possible to check that V0ε ≤ 1 and then MSA still applies [26],
yielding an exponential growth at longer times and showing results similar to the Dirichlet case. In fact, this is a case
where we can reproduce Dirichlet results by considering a low amplitude perturbation in the equations of generalised
RBC [23]. In Fig. 5(a), for longer times, we draw a blue thick slope, which corresponds to the linear growth predicted
by the MSA analytical approach, while the quadratic behaviour of shorter times is generally predicted by a simpler
perturbative approach.
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Ωt0.1

1

10

100

1000
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FIG. 5: (a) Left: Number of particles created N1 under the perturbation of Ω = 2ω1 for V0 = 20, and a small perturbation
amplitude ε = 0.005, so as to have V0ε ∼ 0.1. For equidistant spectra, the coupling between an infinite number of modes
generates a quadratic and linear growth in the number of particles, for short and long-time scales respectively. (b) Right:
LogPlot behaviour of the number of particles created Nk coefficient for a short temporal scale under a perturbation of Ω = 2ω1

for V0 = 1, χ0 = 0.05 and ε = 0.001. We show the behaviour of the number of particles created for the first eigenstate
of eigenfrequency ω1 = 0.8495 (red and blue dashed line) and for the second eigenstate of ω2 = 3.2819 (black dotted line).
The difference between the red and blue dashed line is that we consider different values of Λm. It is shown that Nk grows
exponentially for N1 as expected since the spectrum is non-equidistant. Parameters used: Λ = 10.

In Figure 5(b), we still consider a massless field satisfying generalised RBC. However, we choose parameters in the
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non-equidistant region of the spectrum. For example, by setting V0 = 1, ε = 0.001 and χ0 = 0.05. In that case
ω1 = 0.8495, ω2 = 3.2819 and ω3 = 6.1403 just to mention a few eigenfrequencies. By driving the cavity with an
external frequency Ω = 2ω1, we see the exponential growth in the number of particles created in mode field one N1.
It is important to note that Ω 6= |ωi±ωj |, which means there is only one single mode under parametric resonance. As
one expects, if the only resonant mode is tuned with the external frequency Ω, the number of created particles in this
mode growths exponentially (similarly to Fig. 1(b) with different boundary conditions). In this case, we have solved
the problem by using different values of Λm. In the red solid line of Fig. 5(b), we have used Λm = 10 and in the
blue dashed line Λm = 30. We have verified that for values Λm ≥ 30 the results obtained are similar. The difference
between both curves is only noticeable at short times. The black line corresponds to the second eigenfrequency which
is not excited. The freedom for choosing different parameters in order to transform RBC into already known situations
(as DBC) allows to cross-check analytical results and makes our numerical scheme reliable.
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FIG. 6: (a)Absolute value of B1 as function of time to show the role of the time tF for which the perturbation is on. It can be
seen that the number of particles N1 = |B1|2/(2ω1) is increased as the perturbation time is longer. Parameters used: Ω = 2ω1,
or V0 = 1, ξ = 0.05 and ε = 0.001 . (b) Absolute value of B2 as function of time to show the role of the time tF , which is
considerable smaller compared with B1 for the same time.

In order to set some light into the numerical scheme, in Figure 6, we show the absolute value of the coefficient
B, which is numerically related to the number of particles created Nk = |Bk|2/(2ωk), where k is the field mode
considered. Therein, we show how the value of this coefficient grows in time, as the perturbation time is turned on
for longer times. In Fig. 6(a), we show the behaviour of |B1| for the same parameters used in Fig. 1(b), while in Fig.
6(b), we present |B2|. It is clear to see that the leading term is the one related to the field mode 1. This schematic
representation applies to all cases considered.

V. CONCLUSIONS

We present an alternative numerical approach to simulate the process of photon generation in a cavity in which one
mirror is forced to oscillate in a prescribed way. The focus is not restricted to one dimensional models, but 3D cavities
are studied as well, beyond the perturbative regime, which is shown to be recovered in the appropriate limit. We are
neither restricted on the type of boundary condition used. In our numerical approach, we can choose to use Dirichlet,
Neumann or generalised Robin conditions, allowing the computation of particle creation in time regimes beyond any
analytical prediction. In our approach, we take advantage of the analytical studies obtained in the area and present
a global numerical approach. Our numerical scheme is based on the resolution of the equations of field modes with
different time-dependent boundary conditions ( without constraints in the wall motion ) and a further comparison
between the ground state before and after the movement of the cavity wall. We selectively focus on obtaining the
information required for the calculation of the number of particles creation relying only on numerical schemes.

We have considered a cavity with a moving wall at one end x = Lx(t), while the other wall at x = 0 remains at rest.
We have derived the set of differential equations for the canonical variables in each case considered and computed
numerically the number of particles created. For example, by considering separately the Dirichlet and Neumann cases,
we have solved the TE and TM modes of the electromagnetic field inside the cavity, reproducing previous analytical
predictions. We have also shown that by considering Neumann (at x = 0) and generalised Robin boundary conditions
(at x = Lx), we simulate a waveguide superconducting cavity terminated with a SQUID at one end, which is the
promising experimental setup for measuring the DCE. We have further shown that by introducing the parameter M ,
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we can reproduce the creation of particles for a 3D cavity, while if M = 0, then the scalar field is inside a 1D cavity.
In all cases, we have shown that the rate of particle production depends strongly on whether the frequency spectrum
is equidistant or not.

In all cases considered, we have presented the number of particles created. We have, for example, re-obtained
already known results in the simplest cases of 1D massive and massless field with Dirichlet boundary conditions.
These examples validate our numerical scheme. We have further presented results that have been longer predicted
but never demonstrated as the bigger rate of TM-photons compared to TE-photons. In the case of generalised Robin
boundary conditions, we have obtained expected results for an equidistant spectrum and for a non-equidistant one.
Hence, the formalism presented in this manuscript can be used to cross-check analytical results also in this realistic
case which might be of importance for future experiments. Finally, we have also shown excellent agreement of our
numerical scheme with the theoretical predictions and with other numerical approaches.

With our formalism at hand, the DCE can be investigated fully numerically making it possible to study a variety
of scenarios where no analytical results are known such as large amplitude oscillations and arbitrary wall motions.
By considering this numerical approach, we gain confidence in our numerical method by reproducing already known
analytical results. This allows, on the one side, to explore regions of the frequency spectrum that can not be yet
reached because of analytical difficulties in the development of solutions; and on the other, multimode couplings
beyond MSA ( i.e. longer times exploration). This approach can be easily extended to having two-moving mirrors by
adding a time-dependent boundary conditions to the x = 0 extreme. Finally, it is worth mentioning that this method
can be used to study the generation of squeezed states of light in moving cavities, as studied in [47].
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Appendix A: Boundary conditions considered

In this appendix we present the set of differential coupled equations for the canonical variables Qnk determined by
the use of different boundary conditions when considering Eq.(6) in Section II.

a. Dirichlet boundary condition (DBC)

We firstly present the set of coupled differential equations for the canonical variables obtained when the field inside
the cavity satisfies DBC, expressed by:

Q̇m = Um,

U̇m = −ω2
m(t)Qm + 2λ(t)

∑
s

SDmsQ̇s + λ̇(t)
∑
s

SDmsQs + λ2(t)
∑
l,s

SDlmS
D
lsQs, (A1)

where SDms is a coupling matrix, and takes the form

SDms =

{
0 if m = s
(−1)s+m 2ms

(m2−s2) otherwise (A2)

and λ(t) = L̇x(t)
Lx(t)

.

b. Neumann boundary condition (NBC)

In the case the field inside the cavity satisfies NBC, the procedure is similar, but the coupling matrices Sms, Tms
and Vms are more complicated, defined in this case as:

Q̇m = Um,

U̇m = −ω2
m(t)Qm − 2λ(t)

∑
s

SNmsQ̇s − λ̇(t)
∑
s

SNmsQs − 2L2
x(t)λ̇(t)

∑
s

TmsQ̈s

−
∑
s

(
L2
xλ̈Tms − λ(t)Rms(t, ., .)

)
Q̇s − L2

xλ(t)
∑
s

Tms
...
Qs,

where the coupling matrices are:

SNms =

{
−1 if m = s
(−1)s+m 2ms

(m2−s2) if m 6= s (A3)

Tms =

{
1
15 −

−3+(πm)2

4(πm)4 if m = s
(m−s)4(−12+(π(m+s))2) cos(π(m+s))

((m2−s2)π)4 − (m+ s)4(−12 + (π(m− s))2) cos(π(m− s)) if m 6= s
(A4)

Rms =


− 8(mπ)8(33+2L0

2)+315(−34(mπ)6+8(mπ)8−315L0
2+3(mπ)4(46−5L0

2)+15(mπ)2(−18+11L0
2) cos(2mπ))

2520(mπ)8 if m = s
1
π8 ( 10080L0

2−(m−s)2π2(−2160+1320L0
2+(m−s)2π2(276+π2(−29m2+34ms−5s2+2m(m−s)3π2)−30L0

2))) cos(π(m−s))
(m−s)8

+ (10080L0
2−(m+s)2π2(−2160+1320L0

2+(m+s)2π2(276+(m+s)π2(−29m−5s+2m(m+s)2π2)−30L0
2))) cos(π(m+s))

(m+s)8 ) if m 6= s.

(A5)

c. Robin boundary condition (RBC)

A promising setup in order to experimentally study the DCE consists of a superconducting waveguide ended with
a SQUID, that determines the boundary condition of the field at that point [24]. A time dependent magnetic flux
through the SQUID generates a time dependent boundary condition, with the subsequent excitation of the field
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(particle creation) in the waveguide. The electromagnetic field inside the cavity can be described by a single quantum
massless scalar field satisfying NBC in x = 0 and generalised RBC in x = Lx (assuming a SQUID located at Lx).
From a mathematical point of view, the system is therefore modeled by a massless scalar field satisfying generalised
RBC. The set of equations for the canonical variables related to the field modes are:

Q̇m = Um,

U̇m = ω2
m(t)Qm +

∑
s

SRmsQs, (A6)

with

SRms =
2 ε b0√
MmMs

sin(f0) sin(Ωt) cos(ωmLx) cos(ωsLx). (A7)

and Mm = 1 + sin(2ωmLx)
2ωmLx

+ χ0

Lx
cos(ωmLx)2 with b0 and χ0 dimensionless physical quantities. f(t) is the phase across

the SQUID controlled by an external magnetic flux and defined as cos(f(t)) = cos(f0 + ε cos(Ωt)) [23], obtaining a
boundary condition described as:

χ0
¨φLx

+ b0 cos(f(t))φLx
+ φ′Lx

= 0, (A8)

with b0 = 2Ej/ELcav
and χ0 = 2Cj/(C0Lx) all physical parameters defined in [24].

Appendix B: Comparison among previous numerical results

In [31, 37] authors show that the number of TE-mode photons created in a three dimensional cavity equals the
number of scalar particles of “mass” k⊥ created in a one dimensional cavity of length [0, Lx(t)]. Considering a periodic
trajectory of the moving mirror

Lx(t) = Lx(1− ε sin(Ωt)), ε� 1,

In a resonantly vibrating cavity Ω = 2ωn, the number of TE-mode photons created in the resonant mode increases
exponentially in time as:

Nn(t) = sinh2(nγnεt), with γn =
n

4ωn

(
π

Lx

)2

, (B1)

with ωn defined as in Eq.(17) and Lx the initial length of the one dimensional cavity.
In the present manuscript we propose a fully numerical approach following the analytical expressions for the mode

field equations developed in [31, 33]. The only numerical approach existing in the Literature corresponds to [36, 37]
who presented a formalism allowing numerical investigation of the DCE for scalar particles in one-dimensional cavity.
In [36], the author studied the number of TE-mode photons created for a massless electromagnetic field, while in [37]
the generalisation of the method to higher dimension has been presented. As explained in the main text, the number
of particles created is defined by the comparison between the ground state before and after the movement of the cavity
wall, explicitly defined as in Eq. (15). The author then introduces auxiliary functions ξmn and ηmn to explicitly find
the expression for the Bogoliubov coeficients αmn and βmn. Through this auxiliary functions the author is making a
transformation into a known basis, ensuring the new variables satisfied the equation of motion and the same boundary
conditions (Dirichlet). In Ref.[37], these coefficients are presented:

αmn(tF ) =
1

2

√
ΩFn
Ω0
n

[
∆+
n (tF )ξmn (tF ) + ∆−n (tF )ηmn (tF )

]
, (B2)

βmn(tF ) =
1

2

√
ΩFn
Ω0
n

[
∆−n (tF )ξmn (tF ) + ∆+

n (tF )ηmn (tF )

]
, (B3)

with ∆±n (t) = 1/2(1±Ω0
n/Ωn(t)) as defined in Ref.[37]. In this way, Ref.[37] has complete knowledge of the final state

and can compute the number of created particles by means of Eqs.(B3) and (15). After obtaining this analytical result,
a numerical implementation is applied based on these expressions. The numerical results presented were entirely in
very good agreement with the corresponding analytical predictions derived for small amplitude oscillations ε� 1 which



15

demonstrates the reliability of the numerical simulations. However, the highest drawback of the approach presented in
Refs.[36, 37] is that more complicated boundary conditions appearing for example when studying TM-mode photons
cannot be treated within that approach. This is because they can not obtain the corresponding expression for for
αmn and βmn in the case of more complicated boundary conditions.

On the contrary, with our numerical approach we do not focus on the exact expressions for αmn and βmn. We
proceed alternately to compute the number of particles created. We assume that the unperturbed solution has the
form of:

Qn(t ≥ tF ) =
1√
2ωFn

(Ân(tF )e−iω
F
n t + B̂n(tF )eiω

F
n t), (B4)

with ωFn the frequency for t ≥ tF as explained in the main text. We therefore can multiply both terms of the equation
by exp (−iω1

nt) and take the mean value in tF < t < tmax. In this way, we are able to numerically evaluate |Bn|2
and also the particle number in filed mode n as a function of time as Nn(t) = |Bn(t)|2/(2ωFn ). In our numerical
approach we solve the equation of motion for the field modes (for Dirichlet, generalized Neumann and generalized
Robin boundary conditions) and evaluate the number of particles created in each case.

In order to compare our numerical scheme with others reported in the Literature, we consider Dirichlet boundary
conditions. In the case of a three dimensional cavity, we can reproduce the analytical result derived in [33] and
compare with the results obtained by the numerical approach proposed in [36] (also programmed by us).
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FIG. 7: We show the analytical prediction of [33] for the number of TE-mode photons created in mode n with a solid red line.
With a blue dashed line we present the curve predicted by the numerical approach of Ruser and with a black dotted line, we
show our numerical results. Parameters used: ε = 0.001, M = 0.2, Lx = 1.0, Λ = 10 and n = 1.

In Fig.7 we show the numerical results obtained by our approach in the case of a three dimensional cavity with
Dirichlet boundary conditions and compare them with the analytical prediction [33] and previous results in the
Literature. As we can see, our result agrees very accurately with the analytical prediction up to times of order 1/ε by
considering only ten field modes involved, i.e a frequency cut off Λ = 10. Our method can be improved by considering
a bigger number of modes involved. Within our formalism, the DCE can be investigated fully numerically making
it possible to study a variety of scenarios where no analytical results are known (large amplitude oscillations and
arbitrary wall motions etc). Our main advantage is that we can apply this formalism to more general boundary
conditions such as generalised NBC and RBC (contrarily to Refs.[36, 37]).

Appendix C: Code description and computational performance

The code was written in FORTRAN 90 and running in several Pc with processor I7 3.6 and Intel Xeon 2.4.
Distributed parallelism was implemented using OPENMP standard. The integration in time of the modes following
the Runge Kutta four order method with accelerator of Mayer is the most demanding part of the code consuming
95% of the calculi. Incrementing the number of coupled modes have a geometric intensification of the time consumed
that is the reason why it was important to establish the minimal number of modes for which the results were accurate
enough in the first place. We have noted that a cuttoff of Λ ∼ 17, was a good number of field modes involved to
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obtain accurate simulations and reproduce analytical results (as shown in Fig.2(a)). Consider that we need to solve
a [4× Λ] set of coupled differential equations of first order in each time step. (see Eq.(7), real and imaginary part).
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FIG. 8: Time consumed in calculi as a function of the number of modes Λ considered in the electromagnetic field.

In Fig.8 we plot for a general case the time consumed in calculi for obtaining 10 points of the curve |B2| in function
of time (see Fig.6 for a description of numerical scheme). We increase the number of modes used (in the x axis)
increasing the final time tF at which the wall remains at rest again, for four different values of T (being T = 100
numerical time units). In this way, we compute |B2|. It is easy to note taht the time consumed depends strongly of
the number of modes, specially for large times.


