Artículo
Multiobjective evolutionary optimization of traffic flow and pollution in Montevideo, Uruguay
Fecha de publicación:
09/2018
Editorial:
Elsevier Science
Revista:
Applied Soft Computing
ISSN:
1568-4946
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Traffic congestion and pollution are important problems in modern cities. As improving traffic flow via infrastructure modifications is expensive and intrusive, approaches using simulations emerge as economic alternatives to test different policies, with less negative impact on cities. This article proposes a specific methodology combining simulation and multiobjective evolutionary methods to simultaneously optimize traffic flow and vehicular emissions via traffic lights planning in urban areas. The experimental evaluation is performed over three real areas in Montevideo (Uruguay). Significant improvements on travel times and pollution are reported over the current configuration of traffic lights cycles and also over other traffic regulation techniques. Moreover, the multiobjective approach provides policy-makers with a set of alternatives to choose from, allowing the evaluation of several scenarios and the dynamic modification of traffic light cycles.
Palabras clave:
MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS
,
POLLUTION
,
SIMULATION
,
TRAFFIC FLOW
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Péres, Matias; Ruiz, Germán; Nesmachnow, Sergio; Olivera, Ana Carolina; Multiobjective evolutionary optimization of traffic flow and pollution in Montevideo, Uruguay; Elsevier Science; Applied Soft Computing; 70; 9-2018; 472-485
Compartir
Altmétricas