Artículo
An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration
Fecha de publicación:
07/2013
Editorial:
Elsevier Science
Revista:
Talanta
ISSN:
0039-9140
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Articulos de INST.DE QUIMICA ROSARIO
Citación
Allegrini, Franco; Olivieri, Alejandro Cesar; An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration; Elsevier Science; Talanta; 115; 7-2013; 755-760
Compartir
Altmétricas