Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Tesis doctoral

Detección, clasificación y localización de eventos de calidad de energía utilizando técnicas avanzadas de procesamiento de señales e inteligencia artificial

de Yong, David MarceloIcon
Director: Magnago, FernandoIcon
Codirector: Reineri, Claudio Ariel
Fecha de publicación: 01/01/2016
Idioma: Español
Clasificación temática:
Control Automático y Robótica

Resumen

La convergencia de la red eléctrica tradicional con los sistemas de generación distribuida, las fuentes de energía renovable y la incorporación de dispositivos electrónicos no lineales, generan una gran cantidad de fenómenos electromagnéticos que provocan un deterioro en la calidad de la energía consumida por el usuario.La desregulación de los mercados y el hecho que los usuarios residenciales e industriales se hayan vuelto más exigentes en lo referente a la calidad de la energía que consumen genera marcadas presiones a todos los actores del mercado para brindar una energía de mayor calidad.Por este motivo resulta imprescindible que las empresas eléctricas cuenten con herramientas que permitan el monitoreo del estado de la red en tiempo real para gestionar adecuadamente tareas de mantenimiento preventivo y reactivo de la red y, de este modo, mejorar los índices que miden la calidad de la energía.En el futuro, las empresas prestadoras de energía eléctrica se verán obligadas a incurrir en importantes gastos para implementar dispositivos de medición, redes de comunicación para centralizar la información y algoritmos de procesamiento que permitan extraer información importante de los datos colectados.Sin importar los objetivos técnicos involucrados en la implementación de un sistema de monitoreo el principal motivo que fundamenta su implementación radica en la necesidad, de mitigar las pérdidas económicas generadas por las perturbaciones en suministro eléctrico.Un algoritmo de clasificación de perturbaciones y localización de fallas tiene por objetivo principal encontrar la fuente de la perturbación para establecer diagnósticos de la salud de la red y, en caso de ser necesario, rápidamente restablecer el servicio.En este contexto, en la presente tesis se presentan algoritmos innovadores de procesamiento de mediciones obtenidas en un sistema eléctrico con el objetivo de detectar, caracterizar, clasificar y localizar perturbaciones en un sistema eléctrico de potencia, empleando la menor cantidad posible de información.La mayoría de los algoritmos propuestos por la comunidad científica se enfocan a detectar y clasificar una perturbación, dentro de un conjunto de muestras, evitando abordar casos que comúnmente se presentan en la realidad tal como las perturbaciones complejas.Por otro lado, la mayoría de las publicaciones relativas a la localización de fallas se enfocan en sistemas eléctricos de transmisión siendo muy escasos los trabajos que abordan la problemática desde el punto de vista de un sistema de distribución.En la presente tesis se presenta el desarrollo de diversos algoritmos cuyo objetivo radica en la detección y clasificación de perturbaciones simples y complejas así como también en la localización de fallas en sistemas eléctricos de potencia.Los desarrollos realizados están fundamentados en avanzadas técnicas de procesamiento de señales, diversas estrategias para la extracción de parámetros característicos, métodos de minería de datos para la selección de parámetros característicos y técnicas innovadoras de Inteligencia Artificial para la clasificación y localización de eventos de calidad de energía.Los métodos desarrollados presentan destacados resultados en comparación con las publicaciones que abordan la problemática propuesta en la presente tesis. Por este motivo, los algoritmos desarrollados se enfocarán en la detección y clasificación de perturbaciones complejas y en la localización de fallas en sistemas eléctricos de distribución.
Palabras clave: Calidad de Energía , Procesamiento de señales , Minería de Datos , Inteligencia Artificial
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.234Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/93760
Colecciones
Tesis(CCT - CORDOBA)
Tesis de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
de Yong, David Marcelo; Magnago, Fernando; Reineri, Claudio Ariel; Detección, clasificación y localización de eventos de calidad de energía utilizando técnicas avanzadas de procesamiento de señales e inteligencia artificial; 1-1-2016
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES