Artículo
Characterization of autoregressive processes using entropic quantifiers
Fecha de publicación:
15/01/2018
Editorial:
Elsevier Science
Revista:
Physica A: Statistical Mechanics and its Applications
ISSN:
0378-4371
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The aim of the contribution is to introduce a novel information plane, the causal-amplitude informational plane. As previous works seems to indicate, Bandt and Pompe methodology for estimating entropy does not allow to distinguish between probability distributions which could be fundamental for simulation or for probability analysis purposes. Once a time series is identified as stochastic by the causal complexity-entropy informational plane, the novel causal-amplitude gives a deeper understanding of the time series, quantifying both, the autocorrelation strength and the probability distribution of the data extracted from the generating processes. Two examples are presented, one from climate change model and the other from financial markets.
Palabras clave:
PERMUTATION ENTROPY
,
TIME SERIES ANALYSIS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Traversaro Varela, Francisco; Redelico, Francisco Oscar; Characterization of autoregressive processes using entropic quantifiers; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 490; 15-1-2018; 13-23
Compartir
Altmétricas