Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A flexible supervised term-weighting technique and its application to variable extraction and information retrieval

Maisonnave, MarianoIcon ; Delbianco, Fernando AndrésIcon ; Tohmé, Fernando AbelIcon ; Maguitman, Ana GabrielaIcon
Fecha de publicación: 02/2019
Editorial: Iberamia
Revista: Inteligencia Artificial
ISSN: 1137-3601
e-ISSN: 1988-3064
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Successful modeling and prediction depend on effective methods for the extraction of domain-relevant variables. This paper proposes a methodology for identifying domain-specific terms. The proposed methodology relies on a collection of documents labeled as relevant or irrelevant to the domain under analysis. Based on the labeled document collection, we propose a supervised technique that weights terms based on their descriptive and discriminating power. Finally, the descriptive and discriminating values are combined into a general measure that, through the use of an adjustable parameter, allows to independently favor different aspects of retrieval such as maximizing precision or recall, or achieving a balance between both of them. The proposed technique is applied to the economic domain and is empirically evaluated through a human-subject experiment involving experts and non-experts in Economy. It is also evaluated as a term-weighting technique for query-term selection showing promising results. We finally illustrate the applicability of the proposed technique to address diverse problems such as building prediction models, supporting knowledge modeling, and achieving total recall.
Palabras clave: INFORMATION RETRIEVAL , QUERY-TERM SELECTION , TERM WEIGHTING , VARIABLE EXTRACTION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.862Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial 2.5 Unported (CC BY-NC 2.5)
Identificadores
URI: http://hdl.handle.net/11336/92800
URL: http://journal.iberamia.org/index.php/intartif/article/view/255
DOI: http://dx.doi.org/10.4114/intartif.vol22iss63pp61-80
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Maisonnave, Mariano; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Maguitman, Ana Gabriela; A flexible supervised term-weighting technique and its application to variable extraction and information retrieval; Iberamia; Inteligencia Artificial; 22; 63; 2-2019; 61-80
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES