Mostrar el registro sencillo del ítem

dc.contributor.author
Lovino, Miguel Angel  
dc.contributor.author
Müller, Omar Vicente  
dc.contributor.author
Berbery, Ernesto H.  
dc.contributor.author
Muller, Gabriela Viviana  
dc.date.available
2019-11-29T19:02:42Z  
dc.date.issued
2018-04  
dc.identifier.citation
Lovino, Miguel Angel; Müller, Omar Vicente; Berbery, Ernesto H.; Muller, Gabriela Viviana; Evaluation of CMIP5 retrospective simulations of temperature and precipitation in northeastern Argentina; John Wiley & Sons Ltd; International Journal of Climatology; 38; 51; 4-2018; e1158-e1175  
dc.identifier.issn
0899-8418  
dc.identifier.uri
http://hdl.handle.net/11336/90979  
dc.description.abstract
It is generally agreed that models that better simulate historical and current features of climate should also be the ones that more reliably simulate future climate. This article describes the ability of a selection of global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) to represent the historical and current mean climate and its variability over northeastern Argentina, a region that exhibits frequent extreme events. Two types of simulations are considered: Long-term simulations for 1901-2005 in which the models respond to climate forcing (e.g. changes in atmospheric composition and land use) and decadal simulations for 1961-2010 that are initialized from observed climate states. Monthly simulations of precipitation and temperature are statistically evaluated for individual models and their ensembles. Subsets of models that best represent the region´s climate are further examined. First, models that have a Nash-Sutcliffe efficiency of at least 0.8 are taken as a subset that best represents the observed temperature fields and the mean annual cycle. Their temperature time series are in phase with observations (r > 0.92), despite systematic errors that if desired can be corrected by statistical methods. Likewise, models that have a precipitation Pearson correlation coefficient of at least 0.6 are considered that best represent regional precipitation features. GCMs are able to reproduce the annual precipitation cycle, although they underestimate precipitation amounts during the austral warm season (September through April) and slightly overestimate the cold season rainfall amounts. The ensembles for the subsets of models achieve the best evaluation metrics, exceeding the performance of the overall ensembles as well as those of the individual models.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COUPLED MODEL INTERCOMPARISON PROJECT PHASE 5 (CMIP5)  
dc.subject
DECADAL SIMULATIONS  
dc.subject
GLOBAL CLIMATE MODELS  
dc.subject
LONG-TERM SIMULATIONS  
dc.subject
PRECIPITATION  
dc.subject
TEMPERATURE  
dc.subject.classification
Investigación Climatológica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Evaluation of CMIP5 retrospective simulations of temperature and precipitation in northeastern Argentina  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-28T16:50:00Z  
dc.identifier.eissn
1097-0088  
dc.journal.volume
38  
dc.journal.number
51  
dc.journal.pagination
e1158-e1175  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Lovino, Miguel Angel. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Müller, Omar Vicente. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Berbery, Ernesto H.. University of Maryland; Estados Unidos  
dc.description.fil
Fil: Muller, Gabriela Viviana. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.journal.title
International Journal of Climatology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.5441  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/joc.5441