Mostrar el registro sencillo del ítem
dc.contributor.author
Lovino, Miguel Angel
dc.contributor.author
Müller, Omar Vicente
dc.contributor.author
Berbery, Ernesto H.
dc.contributor.author
Muller, Gabriela Viviana
dc.date.available
2019-11-29T19:02:42Z
dc.date.issued
2018-04
dc.identifier.citation
Lovino, Miguel Angel; Müller, Omar Vicente; Berbery, Ernesto H.; Muller, Gabriela Viviana; Evaluation of CMIP5 retrospective simulations of temperature and precipitation in northeastern Argentina; John Wiley & Sons Ltd; International Journal of Climatology; 38; 51; 4-2018; e1158-e1175
dc.identifier.issn
0899-8418
dc.identifier.uri
http://hdl.handle.net/11336/90979
dc.description.abstract
It is generally agreed that models that better simulate historical and current features of climate should also be the ones that more reliably simulate future climate. This article describes the ability of a selection of global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) to represent the historical and current mean climate and its variability over northeastern Argentina, a region that exhibits frequent extreme events. Two types of simulations are considered: Long-term simulations for 1901-2005 in which the models respond to climate forcing (e.g. changes in atmospheric composition and land use) and decadal simulations for 1961-2010 that are initialized from observed climate states. Monthly simulations of precipitation and temperature are statistically evaluated for individual models and their ensembles. Subsets of models that best represent the region´s climate are further examined. First, models that have a Nash-Sutcliffe efficiency of at least 0.8 are taken as a subset that best represents the observed temperature fields and the mean annual cycle. Their temperature time series are in phase with observations (r > 0.92), despite systematic errors that if desired can be corrected by statistical methods. Likewise, models that have a precipitation Pearson correlation coefficient of at least 0.6 are considered that best represent regional precipitation features. GCMs are able to reproduce the annual precipitation cycle, although they underestimate precipitation amounts during the austral warm season (September through April) and slightly overestimate the cold season rainfall amounts. The ensembles for the subsets of models achieve the best evaluation metrics, exceeding the performance of the overall ensembles as well as those of the individual models.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
COUPLED MODEL INTERCOMPARISON PROJECT PHASE 5 (CMIP5)
dc.subject
DECADAL SIMULATIONS
dc.subject
GLOBAL CLIMATE MODELS
dc.subject
LONG-TERM SIMULATIONS
dc.subject
PRECIPITATION
dc.subject
TEMPERATURE
dc.subject.classification
Investigación Climatológica
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Evaluation of CMIP5 retrospective simulations of temperature and precipitation in northeastern Argentina
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-28T16:50:00Z
dc.identifier.eissn
1097-0088
dc.journal.volume
38
dc.journal.number
51
dc.journal.pagination
e1158-e1175
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Lovino, Miguel Angel. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.description.fil
Fil: Müller, Omar Vicente. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.description.fil
Fil: Berbery, Ernesto H.. University of Maryland; Estados Unidos
dc.description.fil
Fil: Muller, Gabriela Viviana. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.journal.title
International Journal of Climatology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.5441
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/joc.5441
Archivos asociados