Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Optimal Sensor Location in Chemical Plants Using the Estimation of Distribution Algorithms

Carnero, Mercedes del Carmen; Hernandez, Jose Luis; Sanchez, Mabel CristinaIcon
Fecha de publicación: 20/08/2018
Editorial: American Chemical Society
Revista: Industrial & Engineering Chemical Research
ISSN: 0888-5885
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

The optimal selection of sensor structures improves the knowledge of the current plant state, which is a central issue for the decision-making process. Instrumentation design is a challenging optimization problem that involves a huge amount of binary variables that represent the possible sensor locations. In this work, the limitations of the current design strategies are discussed, and they support the application of evolutionary solution methods. Among them, the estimation of distribution algorithms (EDAs) arises as a convenient alternative to solving the problem. These are stochastic optimization strategies devised to capture complex interactions among problem variables by learning the probabilistic model of candidate solutions and its sampling to generate the next population. From the broad spectrum of EDAs that use multivariate models, two representative procedures are selected that significantly differ in the methods used for learning and sampling those models. Furthermore, a comparative performance study is conducted to evaluate the benefits of increasing the complexity of the distribution model with respect to a memetic procedure based on univariate models.
Palabras clave: SENSOR NETWORK DESIGN , EVOLUTIONARY COMPUTATION , ESTIMATION OF DISTRIBUTION ALGORITHMS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.779Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/90764
URL: https://pubs.acs.org/doi/abs/10.1021/acs.iecr.8b01680
DOI: http://dx.doi.org/10.1021/acs.iecr.8b01680
Colecciones
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Carnero, Mercedes del Carmen; Hernandez, Jose Luis; Sanchez, Mabel Cristina; Optimal Sensor Location in Chemical Plants Using the Estimation of Distribution Algorithms; American Chemical Society; Industrial & Engineering Chemical Research; 57; 36; 20-8-2018; 12149-12164
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES