Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Test of Hypotheses for Random Graph Distributions Built From EEG Data

Cerqueira, Edgardo DanielIcon ; Fraiman Borrazás, Daniel EdmundoIcon ; Vargas, Claudia VanesaIcon ; Leonardi, Florencia Graciela
Fecha de publicación: 04/2017
Editorial: IEEE Computer Society
Revista: IEEE Transactions on Network Science and Engineering
ISSN: 2327-4697
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

The theory of random graphs has been applied in recent years to model neural interactions in the brain. While the probabilistic properties of random graphs has been extensively studied, the development of statistical inference methods for this class of objects has received less attention. In this work we propose a non-parametric test of hypotheses to test if a sample of random graphs was generated by a given probability distribution (one-sample test) or if two samples of random graphs were originated from the same probability distribution (two-sample test). We prove a Central Limit Theorem providing the asymptotic distribution of the test statistics and we propose a method to compute the quantiles of the finite sample distributions by simulation. The test makes no assumption on the specific form of the distributions and it is consistent against any alternative hypotheses that differs from the sample distribution on at least one edge-marginal. Moreover, we show that the test is a Kolmogorov-Smirnov type test, for a given distance between graphs, and we study its performance on simulated data. We apply it to compare graphs of brain functional network interactions built from electroencephalographic (EEG) data collected during the visualization of point light displays depicting human locomotion.
Palabras clave: Eeg , Kolmogorov-Smirnov Test , Non-Parametric Test of Hypotheses , Random Graphs
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.106Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/81575
URL: http://ieeexplore.ieee.org/document/7862892/
DOI: http://dx.doi.org/10.1109/TNSE.2017.2674026
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Cerqueira, Edgardo Daniel; Fraiman Borrazás, Daniel Edmundo; Vargas, Claudia Vanesa; Leonardi, Florencia Graciela; A Test of Hypotheses for Random Graph Distributions Built From EEG Data; IEEE Computer Society; IEEE Transactions on Network Science and Engineering; 4; 2; 4-2017; 75-82
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES