Mostrar el registro sencillo del ítem
dc.contributor.author
Briguez, Cristian Emanuel
dc.contributor.author
Budan, Maximiliano Celmo David
dc.contributor.author
Deagustini, Cristhian Ariel David
dc.contributor.author
Maguitman, Ana Gabriela
dc.contributor.author
Capobianco, Marcela
dc.contributor.author
Simari, Guillermo Ricardo
dc.date.available
2019-06-11T18:13:44Z
dc.date.issued
2014-10
dc.identifier.citation
Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; et al.; Argument-based mixed recommenders and their application to movie suggestion; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 41; 14; 10-2014; 6467-6482
dc.identifier.issn
0957-4174
dc.identifier.uri
http://hdl.handle.net/11336/77964
dc.description.abstract
Recommender systems have become prevalent in recent years as they help users to access relevant items from the vast universe of possibilities available these days. Most existing research in this area is based purely on quantitative aspects such as indices of popularity or measures of similarity between items or users. This work introduces a novel perspective on movie recommendation that combines a basic quantitative method with a qualitative approach, resulting in a family of mixed character recommender systems. The proposed framework incorporates the use of arguments in favor or against recommendations to determine if a suggestion should be presented or not to a user. In order to accomplish this, Defeasible Logic Programming (DeLP) is adopted as the underlying formalism to model facts and rules about the recommendation domain and to compute the argumentation process. This approach has a number features that could be proven useful in recommendation settings. In particular, recommendations can account for several different aspects (e.g., the cast, the genre or the rating of a movie), considering them all together through a dialectical analysis. Moreover, the approach can stem for both content-based or collaborative filtering techniques, or mix them in any arbitrary way. Most importantly, explanations supporting each recommendation can be provided in a way that can be easily understood by the user, by means of the computed arguments. In this work the proposed approach is evaluated obtaining very positive results. This suggests a great opportunity to exploit the benefits of transparent explanations and justifications in recommendations, sometimes unrealized by quantitative methods.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Defeasible Argumentation
dc.subject
Qualitative Vs Quantitative Recommendations
dc.subject
Recommender Systems
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Argument-based mixed recommenders and their application to movie suggestion
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-06-10T14:29:43Z
dc.journal.volume
41
dc.journal.number
14
dc.journal.pagination
6467-6482
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Briguez, Cristian Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Budan, Maximiliano Celmo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Deagustini, Cristhian Ariel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Maguitman, Ana Gabriela. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
dc.description.fil
Fil: Capobianco, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
dc.journal.title
Expert Systems with Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417414001845
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2014.03.046
Archivos asociados