Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Argument-based mixed recommenders and their application to movie suggestion

Briguez, Cristian EmanuelIcon ; Budan, Maximiliano Celmo DavidIcon ; Deagustini, Cristhian Ariel DavidIcon ; Maguitman, Ana GabrielaIcon ; Capobianco, MarcelaIcon ; Simari, Guillermo RicardoIcon
Fecha de publicación: 10/2014
Editorial: Pergamon-Elsevier Science Ltd
Revista: Expert Systems with Applications
ISSN: 0957-4174
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Recommender systems have become prevalent in recent years as they help users to access relevant items from the vast universe of possibilities available these days. Most existing research in this area is based purely on quantitative aspects such as indices of popularity or measures of similarity between items or users. This work introduces a novel perspective on movie recommendation that combines a basic quantitative method with a qualitative approach, resulting in a family of mixed character recommender systems. The proposed framework incorporates the use of arguments in favor or against recommendations to determine if a suggestion should be presented or not to a user. In order to accomplish this, Defeasible Logic Programming (DeLP) is adopted as the underlying formalism to model facts and rules about the recommendation domain and to compute the argumentation process. This approach has a number features that could be proven useful in recommendation settings. In particular, recommendations can account for several different aspects (e.g., the cast, the genre or the rating of a movie), considering them all together through a dialectical analysis. Moreover, the approach can stem for both content-based or collaborative filtering techniques, or mix them in any arbitrary way. Most importantly, explanations supporting each recommendation can be provided in a way that can be easily understood by the user, by means of the computed arguments. In this work the proposed approach is evaluated obtaining very positive results. This suggests a great opportunity to exploit the benefits of transparent explanations and justifications in recommendations, sometimes unrealized by quantitative methods.
Palabras clave: Defeasible Argumentation , Qualitative Vs Quantitative Recommendations , Recommender Systems
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.101Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/77964
URL: https://www.sciencedirect.com/science/article/pii/S0957417414001845
DOI: http://dx.doi.org/10.1016/j.eswa.2014.03.046
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; et al.; Argument-based mixed recommenders and their application to movie suggestion; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 41; 14; 10-2014; 6467-6482
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES