Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Ecological site classification of semiarid rangelands: Synergistic use of Landsat and Hyperion imagery

Blanco, Paula DanielaIcon ; del Valle, Hector FranciscoIcon ; Bouza, Pablo JoseIcon ; Metternicht, Graciela I.; Hardtke, Leonardo AndrésIcon
Fecha de publicación: 09/2014
Editorial: Elsevier
Revista: International Journal of Applied Earth Observation and Geoinformation
ISSN: 0303-2434
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente

Resumen

Ecological sites are the basic entity used in rangeland health assessment. This study evaluates the synergistic use of multi- and hyper-spectral satellite imagery for sub-pixel classification of ecological sites in  semiarid rangelands. Hyperion and Landsat enhanced thematic mapper (ETM) data are included in a two-step  procedure to mapping ecological sites in Patagonian rangelands of Argentina. Firstly, mixture tuned  matched filtering and logistic regression analyses are used for Hyperion data processing to obtain ecological  site probability images in the area covered by hyperspectral imagery. Secondly, artificial neural networks are applied to model the relationships between the spectral response patterns of Landsat and  the probability images from Hyperion, and used to map ecological sites over the entire study area. Overall  classification accuracy was 81% (kappa = 0.77) with relatively high accuracies for all ecological sites  demonstrating that their spectral signatures are sufficiently distinct to be detectable. Better accuracies were obtained for shrub steppes with desert pavement (producer's and user's accuracies of 89% and  84%, respectively), and shrub-grass steppes associated to tertiary calcareous outcrops (producer's and  user's accuracies of 100% and 86%, respectively), while poorer accuracies resulted for shrub-grass steppes  on old alluvial plains (producer's and user's accuracies of 75% and 56%, respectively). Fuzzy maps of  ecological sites as presented in this research can provide rangeland managers with a tool to stratify the landscape  and organize ecological information for rangeland health assessment and monitoring, prioritizing and selecting appropriate management actions, and promoting the recovery of areas degraded in these  environments.
Palabras clave: Ecological Site , Hyperion , Endmember Selection , Neural Network , Land Management , Mixture Turned Matched Filtering , Logistic Regression
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.060Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/7660
DOI: http://dx.doi.org/10.1016/j.jag.2013.12.011
URL: http://www.sciencedirect.com/science/article/pii/S0303243413001797
Colecciones
Articulos(CCT-CENPAT)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CENPAT
Citación
Blanco, Paula Daniela; del Valle, Hector Francisco; Bouza, Pablo Jose; Metternicht, Graciela I.; Hardtke, Leonardo Andrés; Ecological site classification of semiarid rangelands: Synergistic use of Landsat and Hyperion imagery; Elsevier; International Journal of Applied Earth Observation and Geoinformation; 29; 9-2014; 11-21
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES