Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Solving optimization problems using a hybrid systolic search on GPU plus CPU

Vidal, Pablo JavierIcon ; Alba, Enrique; Luna, Francisco
Fecha de publicación: 06/2017
Editorial: Springer Verlag
Revista: Soft Computing
ISSN: 1433-7479
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In recent years, graphics processing units (GPUs) have emerged as a powerful architecture for solving a broad spectrum of applications in very short periods of time. However, most existing GPU optimization approaches do not exploit the full power available in a CPU–GPU platform. They have a tendency to leave one of them partially unused (usually the CPU) and fail to establish an accurate exchange of information that could help solve the target problem efficiently. Thus, better performance is expected from devising a hybrid CPU–GPU parallel algorithm that combines the highly parallel stream processing power of GPUs with the higher power of multi-core architectures. We have developed a hybrid methodology to efficiently solve optimization problems. We use a hybrid CPU–GPU architecture, to benefit from running it, in parallel, on both the CPU and the GPU. Our experiments over a heterogeneous set of combinatorial optimization problems with increasing dimensionality show a time gain of up to 365 × in our proposal, while demonstrating high numerical accuracy. This work is intended to open up a new line of research that matches both architectures with new algorithms and cooperation techniques.
Palabras clave: Cpu&Ndash;Gpu Cooperative Algorithm , Gpgpu , Heterogeneous Architectures , Optimization , Parallel Hybrid Algorithms
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.444Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/76482
URL: https://link.springer.com/article/10.1007/s00500-015-2005-x
DOI: https://doi.org/10.1007/s00500-015-2005-x
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Vidal, Pablo Javier; Alba, Enrique; Luna, Francisco; Solving optimization problems using a hybrid systolic search on GPU plus CPU; Springer Verlag; Soft Computing; 21; 12; 6-2017; 3227-3245
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES