Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application

Lopez, Ezequiel JoseIcon ; Nigro, Norberto MarceloIcon ; Sarraf, Sofia SoledadIcon ; Marquez Damian, SantiagoIcon
Fecha de publicación: 2012
Editorial: John Wiley & Sons Ltd
Revista: International Journal For Numerical Methods In Fluids
ISSN: 0271-2091
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Mecánica

Resumen

Flows with low Mach numbers represent a limit situation in the solution of compressible flows. The preconditioning of flow equations is one of the classical approaches proposed to capture the solution in the low Mach number limit. In this method, the time derivatives are premultiplied by a suitable preconditioning matrix in order to achieve a well-conditioned system by means of the scaling of the system eigenvalues. Hence, the modified equations have only steady-state solutions in common with the original system. For the application of these methods to unsteady problems, the dual time-stepping technique has emerged, where the physical time derivative terms are treated as source and/or reactive terms. The use of a preconditioning matrix defined to compute steady-state solutions may not be a good choice for unsteady problems, as showed by Vigneron et al. (European Conference on Computational Fluid Dynamics, 2006). However, such matrices can be adapted to perform the computation of transient flows by means of the appropriate redefinition of some coefficients. The application of a ?steady-state? preconditioning matrix to unsteady problems with an ALE (Arbitrary Lagrangian Eulerian) approach is presented. The equations are discretized in space using a stabilized Finite Element method and in time using finite differences. The preconditioning of the governing equations is not applied in the numerical scheme but is used, through the eigenvalues of the preconditioned system, to design appropriately the stabilization term. Several test cases are solved, including incompressible flows and the in-cylinder flow in a motored opposed-piston engine.
Palabras clave: Low Mach Number Compressible Viscous Flows , Local Preconditioning , Arbitrary Lagrangian Eulerian , Stabilized Finite Elements
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.825Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/76388
URL: https://onlinelibrary.wiley.com/doi/full/10.1002/fld.2547
DOI: http://dx.doi.org/10.1002/fld.2547
Colecciones
Articulos(CCT - PATAGONIA CONFLUENCIA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA CONFLUENCIA
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Lopez, Ezequiel Jose; Nigro, Norberto Marcelo; Sarraf, Sofia Soledad; Marquez Damian, Santiago; Stabilized finite element method based on local preconditioning for unsteady compressible flows in deformable domains with emphasis on the low Mach number limit application; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 69; 1; 2012; 124-145
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES